

Developing Specifications for Using Recycled Asphalt Pavement as Base, Subbase or General Fill Materials,

Phase II Final Report

Florida Institute of Technology

Civil Engineering Department www.fit.edu • (321) 674-7555 January 31, 2003

Paul J. Cosentino, Ph.D., P.E., Principal Investigator Edward Kalajian, Ph.D., P.E., Co-Principal Investigator Chih-Shin Shieh, Ph.D., Co-Principal Investigator Wilbur J. K. Mathurin, Graduate Research Assistant Francis A. Gomez, Graduate Research Assistant Elizabeth D. Cleary, Graduate Research Assistant Ailada Treeratrakoon, Graduate Research Assistant

Submitted to:

David Horhota, Ph.D., P.E. State Geotechnical Materials Engineer, State Materials Office Florida Department of Transportation 2006 N.E. Waldo Rd., Gainesville, Florida 32309-8901 (352)337-3108 • SunCom: 642-3108 • Fax: (352)334-1648 Contract Number BC-819

Technical Report Documentation Page

	•			
1. Report No. FL/DOT/RMC/06650-7754	2. Government Accession No	o. 3.	Recipient's Catalog No.	
4. Title and Subtitle		5	Report Date	
	na Deeveled Aenhal		Report Date	
Developing Specifications for Usin			July 10, 2003	
Pavement as Base, Subbase or C	Seneral Fill Materials		. Performing Organization Code	
Phase II		0		
7. Author's		8	. Performing Organization Report No.	
P. J. Cosentino, E. H. Kalajian	. C. S. Shieh. W. J. I	K. Mathurin.		
F. A. Gomez, E. D. Cleary, A.		,		
9. Performing Organization Name and Address		1	0. Work Unit No. (TRAIS)	
Florida Institute of Technolo	gy (321) 674-7		. Work Unit No. (TRAIS)	
Civil Engineering Departme				
150 West University Blvd.		'	1. Contract or Grant No. Contract Number BC 819	
Melbourne, FL 32901-6975		1	3. Type of Report and Period Covered	
12. Sponsoring Agency Name and Address			Final Report	
Florida Department of Trans	sportation		November 2000 to April 2003	
605 Suwannee Street		1	4. Sponsoring Agency Code	
Tallahassee, Florida 32399-	-0450		99700-7601-119	
15. Supplementary Notes				
To: Supplementary Notes				
This Phase II work focused on	1) validating the Phase	developmental s	specifications for using Recycled Asphalt	
Pavement (RAP) as a base, sub-base or ge				
			environmental performance of RAP in the	
field.				
			as a sub-base below rigid pavements. A	
second field site was constructed using R				
collection systems in both the RAP and L environmental performance was analyzed				
construction with Limerock.	lover 12-months. Consu		was equivalent to or better than	
	ehavior increased throug	hout the 8-week	study period based on Field California	
Bearing Ratio (CBR) data converted to L	imerock Bearing Ratio (I	BR), Initial Stiff	ness Modulus (ISM) values from the	
Falling Weight Deflectometer (FWD), an				
(SSG). LBR, Clegg and ISM data indicate				
	s 15 percent. The Clegg	, FWD and SSG	testing also indicated that RAP stiffness was	
similar to Limerock.	d by adding varying per	centages of a noo	rly graded sand with clay an $\Lambda = 2.6$ (SM	
RAP-Soil mixes were evaluated by adding varying percentages of a poorly graded sand with clay, an A-2-6 (SM- SP) soil dredged from the Turkey Creek area in Palm Bay Florida. The 80 percent RAP- 20 percent soil mix produced the most				
			00 percent RAP and the 80/20 Rap-Soil mix	
may pose long term deformation concern			. 1	
			al concerns when used as a highway	
material. The concentrations of heavy me				
	ironmental testing proce	dures. All four y	ielded the same conclusions, indicating that	
the testing program was valid.				
17. Key Words		18. Distribution Stat		
			available to the U.S. public through	
Recycled Asphalt Pavement, Base,			Technical Information Service,	
Subbase, Subgrade			Virginia 22161	
19. Security Classif. (of this report)	20. Security Classif. (of	this page)	21. No of Pages 22. Price	
Unclassified	Unclassified		261	
Form DOT 1700.7 (8-72)	<u> </u>		<u> </u>	
· · · · · · · · · · · · · · · (8-/2)				

Reproduction of completed page authorized

Executive Summary

Developing Specifications for Using Recycled Asphalt Pavement as Base, Subbase, or General Fill Materials, Phase II

by

Paul J. Cosentino, Ph.D., P.E. Edward H. Kalajian Ph.D., P.E. Chih-Shin Shieh, Ph.D. Wilbur J. K. Mathurin Francis A. Gomez Elizabeth D. Cleary Ailada Treeratrakoon

Reclaimed Asphalt Pavement (RAP) stockpiles in Florida have grown because more stringent asphalt pavement SUPERPAVE specifications prevent reusing RAP as aggregate in Hot Mix Asphalt (HMA) production. The application of RAP as a Florida Department of Transportation (FDOT) approved base course, sub-base, and subgrade has been hindered due to low reported laboratory LBR tests.

During a Phase I study, a thorough laboratory and field investigation was conducted. The lab studies focused on evaluating the Limerock Bearing Ratio (LBR) performance of RAP and developing a database of the elementary geotechnical strength parameters such as friction, cohesion and elastic modulus. The field study involved evaluating the strength gains of RAP over 12-months, through a variety of tests.

RAP was classified as a well-graded sand or gravel, with a top size of 1.5 inches. Measured asphalt content, specific gravity and absorption values were 6.73, 2.27 and 2.57 %. The moisture-density behavior did not follow traditional Proctor behavior. The resulting curves did not display a well-defined peak.

The basic geotechnical properties of friction, cohesion and elastic modulus were evaluated for RAP. The engineering properties of RAP proved to be desirable. They provide a sound basis to establish RAP as an accepted structural fill, or as a base or sub-base course in roadway construction.

The field site was constructed of RAP and a control section of cemented coquina. As was shown in the laboratory studies, the field strength of RAP was highly dependent on temperature. It increased and decreased during the cooler spring and warmer summer testing cycles respectively.

Initial LBR values for RAP averaged 16 and increased to 40 within two months. RAP LBR values exceeding 100 were recorded during the cooler months but could not be sustained during the warmer months.

A linear correlation was developed between the Impulse Stiffness Modulus (ISM) determined from the Falling Weight Deflectometer (FWD) and LBR values. FWD testing proved to be very reliable, quick, and accurate.

Based on the results of Phase I, it was concluded that RAP has potential to be used as a sub-base or subgrade, but did not display evidence that it could be used as an FDOT-approved base course. The Phase II work focused on 1) validating the Phase I developmental specifications for using RAP as a base, sub-base or general fill, 2) evaluating the strength gain of RAP with in the first two months after construction, 3) evaluating RAP-Soil mixes in the laboratory and 4) evaluating the environmental performance of RAP in the field.

The Phase I Specifications were updated to allow RAP as a sub-base below rigid pavements. A second field site was constructed with RAP and a Limerock control section plus surface water and leachate water collection systems in both the RAP and Limerock. The initial strength gains were evaluated over an 8-week period and the environmental performance was analyzed over 12-months. Construction with RAP was equivalent or better to the construction with Limerock.

The strength-deformation behavior of RAP increased throughout the 8week study period based on Field CBR data converted to LBR, ISM values from the FWD, and stiffness values from both the Clegg Impact Hammer and the Soil Stiffness Gage (SSG). LBR, Clegg and ISM data indicated that RAP experienced a 50 percent strength gain over 8-weeks while the SSG results indicated that the strength gain was 15 percent. The Clegg, FWD and SSG testing also indicated that RAP had stiffness similar to Limerock.

RAP-Soil mixes were evaluated by adding varying percentages of poorly graded sand with clay classified as an A-2-6 (SM-SP) soil. This soil was processed from dredged from the Turkey Creek area in Palm Bay Florida. The 80 percent RAP- 20 percent soil mix produced the most desirable engineering behavior. Preliminary creep testing indicated that both the 100 percent RAP and the 80/20 Rap-Soil mix may pose long term deformation concerns.

iii

The environmental evaluation indicated that RAP poses no environmental concerns when used as a highway material. All concentrations reported of the heavy metals were well below the EPA standards. Samples were taken over a 12-month period and subjected to four different environmental testing procedures. All four yielded the same conclusions, indicating that the testing program was valid.

Acknowledgements

This work was completed under FDOT contract number BC - 819. The authors would like to acknowledge the following people for their invaluable guidance and help in the completion of this study.

Dr. David Horhota of the Florida Department of Transportation, thank you for your support throughout the entire project.

Ron Lewis, Rick Venick, Tim Blanton, Todd Britton, and David Benefield (FDOT, State Materials Office) – Thank you for your sharing your expertise and guidance in the testing of the field site.

Pam Jones, Vice President of APAC Florida Inc., MacAsphalt Division – Thank you for providing equipment, labor, material and your expertise in constructing the field site. Without your help, this study would have been considerably more difficult.

The following Florida Tech students, specifically Wilbur Mathurin, Francis Gomez, Elizabeth Cleary, Ailada Treerattrakoon, Chaiyo Juisiri, Paul Eggers, and Eric Whikehart.

Table of Contents

1.	. Introduction			
	1.1	Definitions and Availability1		
	1.2	RAP Usage in Florida	1	
	1.3	Engineering Characteristics	2	
	1.4	Environmental Characteristics	3	
	1.5	Existing Specifications	3	
	1.6	Objective	4	
	1.7	Approach	4	
2.	Back	cground and Theory	6	
	2.1	-		
	2.2	Previous In-Situ Testing	11	
		2.2.1 Stiffness and Strength		
		2.2.2 Falling Weight Deflectometer		
		2.2.3 Clegg Impact Test		
		2.2.4 Soil Stiffness Gauge		
		2.2.5 Limerock Bearing Ratio	23	
	2.3	Relative Humidity		
	2.4	Previous Environmental Lab Testing	25	
3.	Meth	nodology	27	
0.	3.1	Material Sampling for Field Site Construction		
	0.11	3.1.1 Grain Size Distribution		
		3.1.2 Asphalt Content		
	3.2	Field Site Development and Layout		
	3.3	Field Site Construction		
	3.4	Testing Cycles		
	3.5	Testing Procedures		
		3.5.1 Falling Weight Deflectometer		
		3.5.2 Clegg Impact Test		
		3.5.3 Soil Stiffness Gauge		
		3.5.4 Limerock Bearing Ratio		
		3.5.5 Calcium Carbide Gas Pressure Moisture Tester		
		3.5.6 Nuclear Densometer		
		3.5.7 Temperature and Humidity Loggers		
	3.6	RAP-soil Mixtures Methodology & Test Procedures		
		3.6.1 Introduction		
		3.6.2 Selection of RAP-soil Mixtures	43	
		3.6.3 Material Sampling	43	
		3.6.4 Sample Preparation		
		3.6.5 Test Procedures	45	
		3.6.5.1 Physical Properties	45	

		3.6.5.2	Engineering Properties	47
			3.6.5.2.1 Dry Rodded Unit Weight	
			3.6.5.2.2 Moisture-Density	48
			3.6.5.2.3 Permeability	
			3.6.5.2.4 Limerock Bearing Ratio	50
			3.6.5.2.5 Static Triaxial Compression	
			3.6.5.3.6 Resilient Modulus	53
	3.7	Preliminary Cree	p Testing Methodology	56
		3.7.1 Typical C	reep Behavior of Soils	56
			nent of Creep Testing Methodology	
	3.8	Environmental T	esting Methodologies	59
			truction	
			ental Field Monitoring	60
		3.8.2.1	Sampling	61
		3.8.2.2	Chemical and Instrumental Analysis	61
			y Test Procedures	
			Toxicity Characteristic Leaching Procedure	
			Synthetic Precipitation Leaching Procedure	
		3.8.3.3	Column Leaching Test	67
4	л	(/' 1D'		70
4.			ssion of Results	
	4.1		bution	
	4.2	1		
	4.3		eflectometer	
	4.4 4.5	00 1	st	
	4.5 4.6		uge	
	4.0 4.7		Bearing Ratio	
	4.7 4.8	1	sture Tests	
	4.8		onditions	
	4.10		files	
	4.11	1	Weight of RAP-Soil Mixtures	
	4 12	•	es of RAP-soil Mixtures	
	4.13		perties of RAP-soil Mixtures	
	т.15		Density	
			lity	
			Bearing Ratio	
			axial Compression	
			Modulus	
			on Characteristics	
	4.14		p Investigation Results	
	4.15		esults and Discussion	
			ly	
		4.15.1.1		
		4.15.1.2	Silver (Ag) Concentration in Runoff and Leachat	
		······	Samples	
			1	

		4.15.1.3	Cadmium (Cd) Concentrations in Runoff and	
			Leachate Samples	127
		4.15.1.4	Chromium (Cr) Concentrations in Runoff and	
			Leachate Samples	129
		4.15.1.5	Lead (Pb) Concentrations in Runoff and Leachate	
			Samples	131
		4.15.1.6	Selenium (Se) Concentrations in Runoff and	
			Leachate Samples	133
		4.15.2 Laborator	y Studies	
		4.15.2.1		
		4.15.2.2	Column Leaching Results	138
		4.15.2.3	Cadmium	138
		4.15.2.4	Lead	140
		4.15.2.5	Selenium	141
		4.15.3 Environm	ental Summary	142
5.	Conc	lusions		145
	5.1	Initial Strength G	ain Conclusions	145
	5.2		Conclusions	
	5.3	Environmental C	onclusions	148
6.	Reco	mmendations		149
7.	Field	Specifications		151
8.	Refe	ences		158

Appendices:

Appendix A	Field Moisture and Density Data	166
Appendix B	Falling Weight Deflectometer Data	172
Appendix C	6000-lbf and 12000-lbf ISM vs. Time Plots	183
Appendix D	Clegg Impact Test Data	186
Appendix E	Soil Stiffness Gauge Data	192
Appendix F	LBR From Field CBR Data	198
Appendix G	Temperature Correlations	202
Appendix H	RAP-soil Mixtures LBR Data	207

Appendix I	Mohr-Coulomb Failure Envelopes	.235
Appendix J	Surface and Leachate Water Data	.239
Appendix K	RAP-soil Mixtures Resilient Modulus Data	.248
Appendix L	Compaction Summary of RAP-Soil Mixtures	.260

1. Introduction

This report summarizes the findings of a second phase research project conducted for the Florida Department of Transportation. The first phase report entitled "Developing Specifications for Using Recycled Asphalt Pavement as Base Sub-base or General Fill Materials" was completed in March 2001 under Contract Number BB-892 (Cosentino and Kalajian, 2001).

1.1 Definition and Availability

Reclaimed asphalt pavement (RAP) is defined as pavement materials, containing asphalt and aggregates, which have been removed and/or reprocessed. In the United States asphalt pavement is the material that is most often recycled (Davis, 2000). There are an estimated 90 million tons of RAP milled yearly with 80% to 90% being reused in roadway repaving, translating into 18 million tons of RAP being available for other uses (Cosentino and Kalajian, 2001). With this volume available, there has been growing interest in using RAP for roadway construction and other fill applications.

1.2 RAP Usage in Florida

Florida, once led the nation in volume of recycled mix used in hot mix asphalt (HMA) production. There has been a steady decline in the amount of RAP being included in the HMA mixes. This decline can be attributed to the implementation of the SUPERPAVE (Superior Performing Asphalt Pavement) design mix adopted by Florida in 1998. In 1999, approximately 587 Mg (647,000 tons) of RAP were used in the production of approximately 2348 Mg (2,589,000 tons) of recycled mix, resulting in a 25% inclusion rate. This is a 2% decrease from the 27% inclusion rate of 1998. The use of RAP saved the state of Florida \$13 million in materials costs in 1999 (FDOT, Asphalt Pavement Recycling Summary, 1994).

1.3 Engineering Characteristics

Previous research has shown that RAP has potential highway material uses. Doig (2000) reported RAPs' angle of internal friction (ϕ) ranged from 37 to 40 degrees, slightly less than the ϕ -values for limerock and cemented coquina of 44 and 41 degrees reported by Bosso (1995). Rodriquez (2001) reported that RAP was installed on high moisture content subsurface soils without construction difficulties or need for dewatering. Equipment operators likened installing RAP under these high moisture conditions to constructing with cemented coquina under favorable conditions (Rodriquez, 2001).

The main drawback preventing the use of RAP as a base course, has been the relatively low Limerock Bearing Ratio (LBR) values reported from laboratory testing (Rodriquez, 2001). Highway materials are typically categorized using stiffness and/or strength criteria. LBR-values are considered to be strength parameters, however, stiffness values obtained from falling weight deflectometer (FWD) tests indicate that RAP may be as stiff as cemented coquina (Rodriquez, 2001). This initial study showed that RAP gained stiffness throughout a 24-month period, with a significant gain in the first two months. Rodriquez (2001) also showed a possible linear relationship between the stiffness parameter obtained from FWD testing and the LBR-values determined from field CBR tests.

1.4 Environmental Characteristics

Townsend and Brantley (1998) investigated the leaching characteristics of RAP in a thorough laboratory investigation. The results lead to the conclusion that RAP poses minimal risk to groundwater as a result of pollutant leaching under normal land disposal or beneficial reuse. The pollutants investigated were volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), and selected heavy metals (Ba, Ca, Cr, Cu, Pb, Ni, and Zn).

To further validate RAP from environmental standpoint, field testing should be conducted.

1.5 Existing Specifications

The specifications that currently govern the selection and use of fill material used in Florida roadway construction were developed for use with conventional aggregates such as limerock, sand-clay, shell and rock material. These materials have to meet the specifications outlined in sections 911, 912, 913, and 913A respectively of the *Florida Department of Transportation Standard Specifications for Road and Bridge Construction, (2000).* The specifications include requirements for liquid and plastic limits, gradation and size, and Limerock Bearing Ratio.

Recycled RAP returned to the roadway can typically be incorporated into asphalt paving by means of hot or cold recycling, but it can also be used as an aggregate in base or subbase construction. According to the latest FDOT Road and Bridge Specification in Section 283, RAP can be used as a base course only on paved shoulders, bike paths and other non-traffic applications (FDOT, 2000). An FDOT memorandum dated November 13, 2000 states that RAP is not permitted below the high water table elevation, in the top 6-inches of slopes and shoulders that will have grass or other type of vegetative establishment and as MSE backfill (Malerk and Xanders, 2000). Base course materials used in Florida are typically required to achieve a minimum LBR of 100, and subbase materials must have an LBR of at least 40 (Florida Department of Transportation, 2000).

1.6 Objective

The study objectives were to; 1) validate the Phase I Developmental Specifications for using RAP material as a base, sub-base or general fill, 2) evaluate the strength-deformation characteristics of RAP-Soil mixes and to 3) evaluate its environmental performance.

1.7 Approach

To meet these objectives both laboratory and field-testing programs were developed and completed over a 24-month period. The lab testing focused on determining the engineering properties of RAP-Soil mixes and the field testing focused on evaluating three items; the strength gains of RAP during the first 8weeks after placement, the relationship between stiffness and strength of RAP and the environmental impacts of RAP.

To conduct the field-testing an outdoor test site composed of RAP and limerock was constructed and monitored at the APAC-Florida, Central Florida Division – Melbourne Branch asphalt plant in Melbourne, Florida. Strengthdeformation characteristics were measured during the eight weeks immediately following construction through the use of the following field tests: Field California Bearing Ratio (CBR), Falling Weight Deflectometer (FWD), Clegg Impact (CIT), and Soil Stiffness Gauge (SSG). Limerock was chosen as a control material, because along with cemented coquina, it is one of the most commonly used materials used in Florida roadway construction. Field CBR, FWD, CIT, and SSG tests were performed the first, second, fourth, sixth, and eighth week following construction. For each test, the results for RAP were compared to the results of the limerock. The effects of humidity, air, and ground temperature on the initial strength gains were also studied.

Environmental analysis samples were obtained from the surface water and leachate water collection systems, constructed in both the RAP and Limerock at the field site. Sampling was performed after significant rainfall events over a 12month period. Laboratory studies, including Toxicity Characteristics Leaching Procedure (TCLP) tests (US EPA, 1992), Synthetic Precipitation Leaching Procedure (SPLP) tests (US EPA, 1994) and column leaching tests were conducted to produce a comparison between the surface water and leachate of the RAP and Limerock that would verify RAP's acceptance from an environmental standpoint.

2. Background & Theory

A complete literature review was conducted during phase I of this work. It included a summary table that indicated that RAP had compacted densities ranging from 109 to 130 pcf (17.1 to 20.4 kN/m³), at moisture contents ranging from 4 to 7 percent. Rap classifies as a coarse grained material with a Unified Soils Classification System (USCS) symbol of GW or American Association of State Highway and Transportation Officials (AASHTO) symbol of A-1-a. The LBR values ranged from 11 to 239, however, the majority of values were less than 50 (Cosentino and Kalajian, 2001). RAP also displayed significant strength gains over the 12-month study. Depending upon the test method used, strength gains from 80 to 550 percent were determined. A large portion of these gains might have occurred during the 8-weeks immediately after construction. However, there was no testing during this time frame since the initial testing program called for testing at 2-month intervals for 12-months after construction.

Rap was also classified according to the process used after milling was completed. Two "post-milling-processes" were described, the hammermill and tubgrinder processes. The hammermill impact crusher is a type of horizontal impact crusher that is composed of a solid rotor and solid breaking bars. The RAP initially undergoes a high speed impact causing particles to rebound between the chamber and with other particles. The RAP is subjected to a second impact as the solid breaking bars and the striker plate collide. This second impact effectively crushes the RAP. When the impact speed is increased and/or when the distance between the striker plate and solid breaking bars is decreased, the hammermill process produces smaller particles. The hammermill crusher has a pivoting breaking bar on a rotor that produces a swinging-hammer type movement (Cosentino and Kalajian, 2001). In the tubgrinder process, a wall pushes the RAP towards a rotating drum containing milling spokes. This process compresses the RAP between two solid plates. The tubgrinder produces mostly coarse sand size material when grinding aggregate material. Upon completion of this study it was concluded that the post-milling processes evaluated had little effect on the engineering behavior of RAP. However, the post-milling portion of this study was not comprehensive since for example, the grinder settings were not varied from sample to sample to evaluate the effects on the grain size of the RAP.

2.1 Previous Lab Testing

Figure 2.1 depicts three typical Modified Proctor moisture-density curves for RAP obtained from various stockpiles at the APAC Florida Macasphalt plant located in Melbourne Florida. The results did not exhibit a classical moisturedensity peak; rather the curves remained relatively flat indicating that RAP is insensitive to moisture content. Several other compaction techniques were evaluated including vibratory, a Modified Marshall compaction and Static compaction. Neither the Modified Marshall nor Static compaction techniques resulted in a more pronounced peak in the moisture-density curves. Figure 2.2 depicts the results from the vibratory compaction using relative density equipment. As is the case with sandy soils, RAP exhibited its highest densities at moisture contents near zero and at the largest moisture values. It was concluded that vibratory compaction at high moisture contents would result in the highest densities (Cosentino and Kalajian, 2001).

RAP compaction in the field site, constructed during Phase I, was accomplished using vibratory equipment after the site was thoroughly wetted with a water truck. The maximum dry density was achieved with this approach. Vibratory compaction was also attempted at moisture contents near 5%, the optimum from Figure 2.1, and the results showed that the required density could not be achieved. This further substantiated the lab-testing conclusion (Cosentino and Kalajian, 2001).

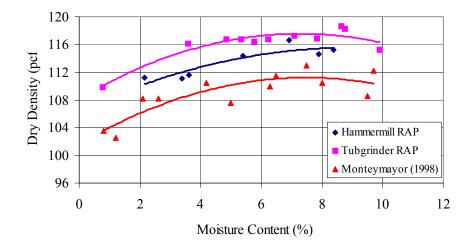


Figure 2.1 Typical Modified Proctor Moisture Density Relationships for Post Milled Process RAP (Cosentino and Kalajian, 2001)

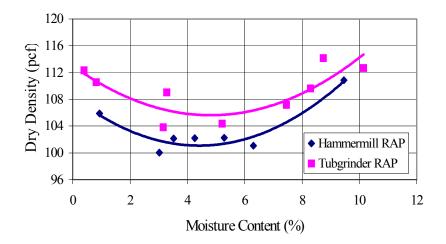


Figure 2.2 Dry density versus moisture content for RAP subjected to vibratory compaction (Cosentino and Kalajian, 2001)

The methods used to compact the RAP samples yielded a range of compacted dry densities between 100 and 125 pcf. As the dry density increases an increase in the bearing strength occurs, shown in Figure 2.3. To yield the required LBR strength of 100 for base courses, a density greater than 118 pcf had to be reached. These densities were only reached using the static method with a compaction pressure of 1000 psi.

Three distinct zones are shown in Figure 2.3. RAP samples with a compacted dry density below 109 pcf had LBR values below 30. RAP compacted to a dry density between 109 and 118 pcf had an LBR's from 10 to 75. The samples compacted statically typically had the larger LBR values. All samples with compacted dry density above 118 pcf had LBR values greater than 40, and as high as 149. Again, the higher LBR values occurred due to static compaction rather than the dynamic, vibratory or Proctor compaction methods. This trend seemed to indicate that a change in structure or binding with asphalt, increasing the bearing strength of the RAP.

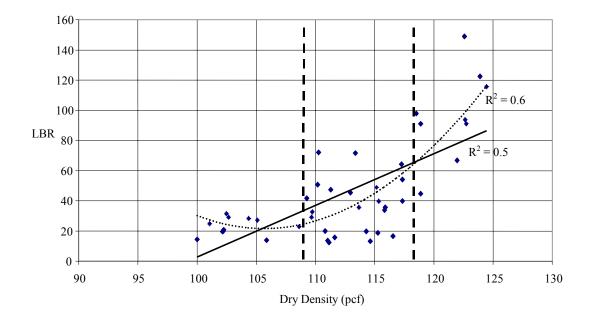


Figure 2.3 LBR versus dry density for RAP showing two possible regression lines through data (1 pcf=0.157 kN/m³) (Cosentino and Kalajian, 2001)

The effects of compaction method were compared to the bearing strength as measured by the LBR test for the RAP. Figure 2.4 displays the range of bearing strengths, as measured by the LBR value.

The bearing strength of RAP, compacted using Proctor, vibratory, modified Marshall and 212 psi static was less than 45. The modified Marshall compaction method yielded the highest LBR values for a dynamic compaction method. This is attributed to the confinement provided by the plate during compaction. RAP samples displayed an increase in strength, as measured by the LBR value, when compacted statically. The minimum LBR value for soil used as a base in the state of Florida is 100. This was only reached by compacting RAP statically at an applied pressure of 1000 psi. An apparent change in the structure of the RAP occurred as the samples were statically compacted at greater pressures.

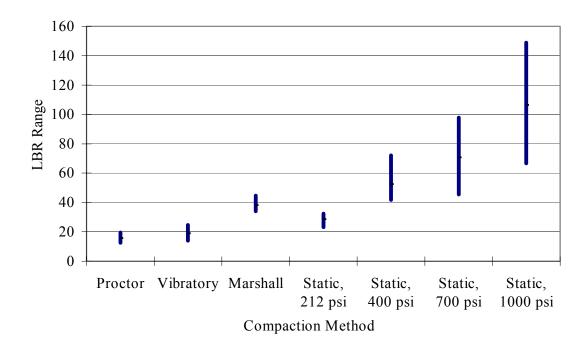


Figure 2.4 LBR versus compaction method for RAP (Cosentino and Kalajian, 2001)

2.2 Previous In-Situ Tests

In-situ tests on highways can be classified as destructive or non-destructive. Destructive tests can be defined as any test that alters the engineering characteristics of the material after it has been tested, therefore affecting ensuing tests. Non-destructive tests do not alter the engineering characteristics of the material (Rodriquez, 2001).

Rodriguez (2001) showed correlations from the results of dynamic testing with the Falling Weight Deflectometer (FWD) and the Automated Dynamic Cone Penetrometer (ADCPT) and LBR values determined from field CBR tests. Figure 2.5 shows the relationships developed from the ADCPT and LBR values. Webster et al (1992) developed a formula to predict bearing values based on the dynamic cone penetrometer index (DCPI) in blows/mm and it was included in this plot. Based on the DCPI values in the top 6-inches and Webster formula which is

$$LBR = 365/(DCPI)^{1.12}$$
 (2.1)

it was concluded that the DCPI is related to the LBR.

Figure 2.6 shows the relationship between the Impulse Stiffness Modulus (ISM) determined from the FWD load-deflection data and the LBR. ISM values are determined by dividing the peak impulse force (kips) by the deflection of the first geophone (mils). Although the regression coefficient is somewhat low, the data still shows an increasing linear relationship between ISM and LBR.

The destructive tests performed during this investigation include the Limerock Bearing Ratio and the Nuclear Density Gauge. Non-destructive tests include the Falling Weight Deflectometer, Clegg Impact Hammer, and Soil Stiffness Gauge. The Clegg Impact Hammer and Soil Stiffness Gauge tests are relatively new. They are currently being evaluated by FDOT for uses in measuring in place soil stiffness and as a possible replacement of in-situ density testing. A brief description of each test is given in subsequent sections.

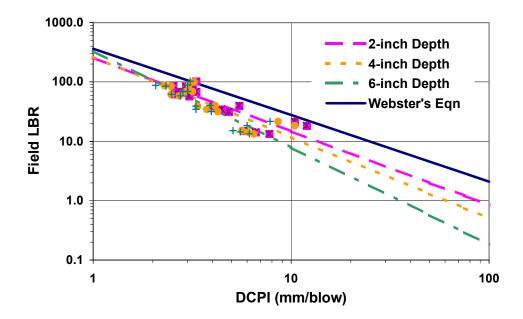


Figure 2.5 LBR values from field CBR tests versus DCPI determined at various depths (Cosentino and Kalajian, 2001)

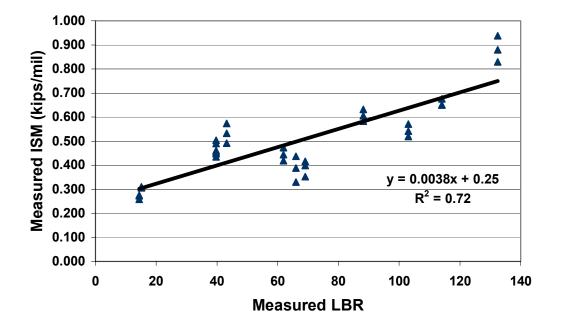


Figure 2.6 LBR vales from field CBR tests versus ISM from FWD tests (Cosentino and Kalajian, 2001)

2.2.1 Stiffness and Strength

Strength and stiffness are two terms that are often used interchangeably, however, they are two separate concepts. Strength is defined as a measure of the maximum load per unit area, and can be in relation to tension, compression, shear, flexure, torsion, or impact. Stiffness is a relative measure of the deformability of a material under load (Somayaji, 2001). The field tests conducted during this investigation were classified as either strength or stiffness tests. The FWD, CIT, and SSG measure the stiffness of the material, whereas, the Limerock Bearing Ratio is a measure of shear strength (Head, 1981). Although the LBR is considered a strength parameter, it can also be considered as a stiffness parameter. It measures the load of a desired material, in pounds per inch, as compared to the load of an acceptable limerock at a deflection of 0.1 inch; therefore, it is a measure of relative stiffness. In other words material A with an LBR of 60 is not as stiff as a material B with an LBR of 100 since it takes more force to cause material B to deflect 0.1 inches than it does to deflect material A that same distance.

2.2.2 Falling Weight Deflectometer

The Falling Weight Deflectometer is one of the most common types of nondestructive testing equipment used for pavement evaluation and management. Use of the FWD has grown rapidly because of its ability to simulate traffic loading. The FWD produces a dynamic impulse load that simulates a moving wheel load, rather than a static, semi-static or vibratory load (Dynatest, 2000).

The loading range can be varied between 1,500 and 27,000 lbf (7 and 120 kN). A mass is dropped from a known height producing a dynamic load and a deflection basin. The loads, measured using a load cell, are transferred to the roadway through an 11.8-inch (30 centimeter) diameter rubber plate. The

deflections are measured by a series of up to seven geophones. The first geophone is located directly underneath the loading plate while the remaining geophones can be positioned up to 8 feet (2.45 m) from the loading plate (Dynatest, 2000). A picture of the FWD is shown in Figure 2.7.

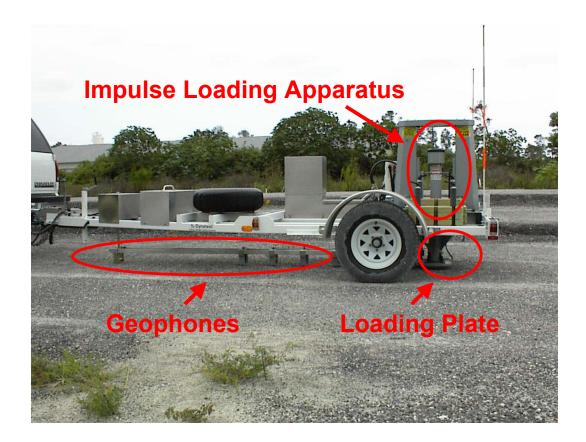


Figure 2.7 Falling Weight Deflectometer

FWD data, combined with layer thickness, is typically used for back calculating the elastic moduli of individual layers of the pavement structure. The complexities of these calculations make software packages such as MODULUS 5.1 developed by Michelak and Scullion (1995) necessary. MODULUS 5.1, developed at the Texas Transportation Insitute, generates a database of deflection basins for a range of layer moduli. It then searches the database to obtain a match

between measured and calculated deflections (Newcomb and Birgisson, 1999). Backcalculation techniques require accurate knowledge of the pavement profile in order to produce reliable results. Calculations done using MODULUS 5.1 showed that very slight changes to layer thickness caused extreme changes in moduli values; the tolerance for layer thickness required by this program was not met at this field site. For this reason typical back calculations of elastic moduli are not performed. A simpler, more straightforward method of analyzing FWD data is to look at the Impulse Stiffness Modulus (ISM).

The Impulse Stiffness Modulus (ISM) measures the overall pavement stiffness. The center plate deflection represents the total deflection of the pavement and thus is indicative of the total stiffness of the pavement section including the subgrade (Newcomb and Birgisson, 1999). The formula for the ISM (Bush and Thompson, 1990) is:

$$ISM = \frac{Load(kips)}{CenterPlateDeflection(mils)}$$
(2.2)

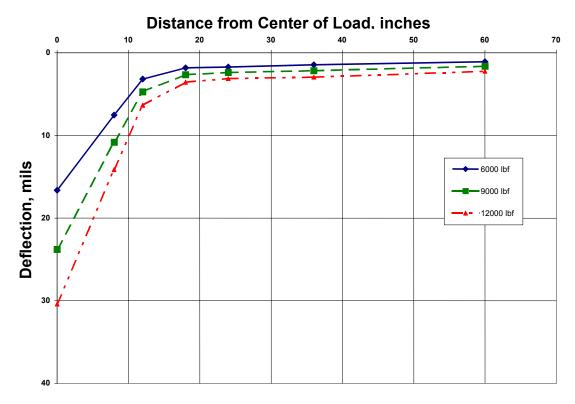


Figure 2.8 Typical FWD Deflection Basin on RAP

A typical deflection basin produced by the FWD on RAP for each load is shown in Figure 2.8. The largest deflection occurs under the first geophone, with the remainder of the deflections decreasing as the radial distance from the load increases. No noticeable changes in deflection occurred beyond a radial distance of twenty inches.

The FWD has been used in several other investigations for evaluating the strength characteristics of RAP. Garg and Thompson (1996) conducted a study to evaluate the potential of RAP as a base material. The project consisted of the construction of a road section with RAP as the base material. The control material in this study was a road section using CA-6 (1.5 inch top size) crushed stone as the base. FWD tests (9 kip load) were conducted. Pavement surface deflections were recorded at 0, 12, 24 and 36 inches offsets from the center of the load plate. The center peak

deflection (D_o) was used to compare the CA-6 and RAP bases. Among the conclusions drawn by Garg and Thompson (1996) were that FWD results indicate that RAP can be successfully used as a conventional flexible pavement base material based on the FWD deflection data. Center plate deflections for RAP and CA-6 ranged from 14 to 20 and 13 to 18, respectively. FWD data indicates that the RAP base provided adequate structural support and subgrade protection. The authors also noted that the performance of RAP base pavement is comparable to that of the crushed base stone (Garg and Thompson, 1996).

Sayed et al. (1996) performed a study to assess the applicability of <u>UN</u>treated <u>Recycled Asphalt Pavement (UNRAP)</u> as a base for pavement sections. Limerock was used for a control material in this study. FWD tests were conducted immediately after construction and four months later. UNRAP produced lower deflections during both testing cycles. This suggests the limerock base is less stiff compared to the UNRAP base. Sayed et al. (1993) concluded that the Falling Weight Deflectometer tests suggest that "UNRAP is at least equivalent to limerock".

2.2.3 <u>Clegg Impact Test</u>

During the 1970s Dr.Baden Clegg developed the Clegg Impact Soil Tester, commonly known as the Clegg Hammer. Although not commonly used in the United States, it is routinely used in other countries for quality control of density and strength requirements of base, subbase, and subgrade layers (Janoo, 1998). The basic principle of this test is that the peak deceleration of a compaction hammer when it is brought to rest is directly related to the resistance offered at contact resulting from the stiffness and shearing resistance of the material (Clegg, 1980). A schematic of the Clegg Hammer is shown in Figure 2.9. It consists of a hammer to which a piezoelectric accelerometer is attached, a guide tube and an electronic display. The hammer is a Modified Proctor compaction hammer weighing 10 lbs (4.5 kg), and the drop height is 18 inches (45 cm). The diameter of the hammer is 1.97 inches (5 cm) which is the same as that of the California Bearing Ratio (CBR) plunger (Main Roads, 2000).

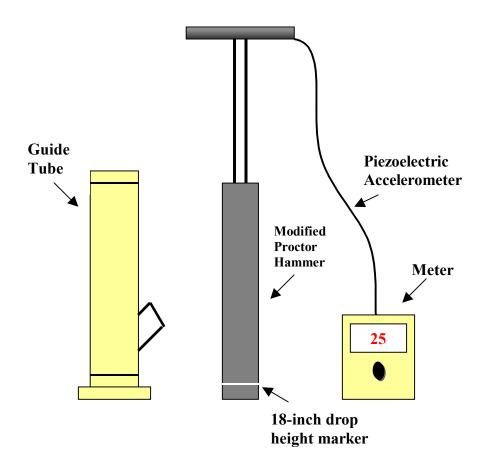


Figure 2.9 Schematic of the Clegg Impact Hammer

The Clegg Impact Test is performed by raising the hammer in the guide tube until a white 18-inch drop height line etched on the hammer is even with the top of the tube. The hammer is released and an accelerometer measures the peak deceleration when the hammer impacts the soil surface. The hammer is dropped four times at each test location and the fourth blow reading is taken as a Clegg Impact Value (CIV) (Clegg, 1980). The first one or two blows flatten and compact and too many blows would pulverize and loosen the immediate surface or may continue to density the material. Thus the recommended practice is to use the fourth blow reading (Clegg, 1980). CIV is defined as the measurement of the peak deceleration in units of tens of gravities of a 10-lb steel mass freefalling 18-inches (Crandell, 2001). The CIV is influenced primarily by the material in the upper 6 inches (15 cm) directly under the hammer (Main Roads, 2000).

The Clegg Impact Test shows promise both in theory and in practice as a possible alternative to the CBR. CBR has become one of the most widely used and recognized soil strength parameters. Some of the similarities between the two tests are that approximately the same area and volume of soil are tested; applicability to both laboratory and fieldwork, and both produce force-penetration parameters. One of the major differences is that the CBR is a static test while the Clegg Impact Test is a dynamic test. Some other differences include the portability of the tests, time, costs and degree of skill required to perform the test. The Clegg offer advantages in all of these aspects (Clegg, 1980). The correlation between the CIV and the CBR is given by the following equation (Clegg, 1980):

$$CBR = (0.24(CIV) + 1)^2$$
 $R^2 = 0.92$ (2.3)

The manner in which this linear relationship was derived should be noted. The correlation is based on data compiled from 200 tests performed in both the lab and the field, throughout several different countries on a wide range of soils and pavement materials.

2.2.4 Soil Stiffness Gauge

The SSG was developed as part of a joint investigation sponsored by the Federal Highway Administration (FHWA) and the United States Department of Defense. Currently the SSG is the subject of a twenty-two state pool funded investigation. The SSG is being considered as an alternative to the nuclear density gauge in controlling the compaction of soils during roadway construction (TR News, 2001). The SSG measures the in-place stiffness of compacted soil at a rate of about one test per minute (Fielder et al, 1998). A schematic of the SSG is shown in Figure 2.10.

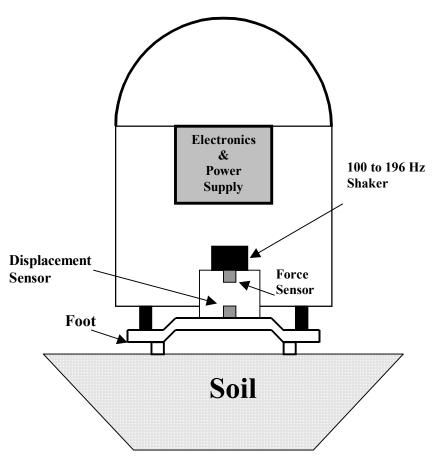


Figure 2.10 Schematic of the Soil Stiffness Gauge (Model H-4140)

The SSG weigh about 25 lbs (11.4 kg), is 11 inches (28 cm) in diameter, and stands about 10 inches (25.4 cm) tall. It rests on the soil surface through a ring shaped foot. The foot bears directly on the soil and supports the weight of the SSG using several rubber isolators. Also attached to the foot is the shaker that drives the foot and sensors that record the force and displacement measurements (Fielder et al, 1998).

The principle of operation of the SSG is to generate a force (P) and to measure the corresponding displacement (δ). The SSG measures the force imparted to the surface and the resulting surface velocity as a function of time. Stiffness, which is force over deflection, is directly related to the impedance. The SSG imparts very small displacements to the soil less than 5 x 10⁻⁵ inches (1.27 x 10⁻⁶ m) at 25 steady state frequencies between 100 and 196 Hertz (Hz). These displacements are measured by a geophone within the body of the gauge. The stiffness is determined at each frequency and the average is displayed (Fielder et al, 1998). The frequency generated by highway traffic is approximately 30 Hz, and the operating-equipment frequency is well below 30 Hz therefore, the SSG measurement will not affected by noise generated by these events (Chen et al, 2001). This stiffness can be related to shear or Young's modulus if a Poisson's ratio is assumed using the following equations (Fielder et al, 1998).

$$E = \frac{K(1-\nu)^2}{1.77R}$$
(2.4)

$$G = \frac{K(1-\nu)}{3.54R}$$
(2.5)

Where K is the SSG stiffness, v is Poisson's ratio and R is the foot radius.

The SSG test is performed by seating the device on the soil and gently rotating it back and forth to obtain the 60% required minimum contact area between the SSG foot and the soil. Once this is completed, the measure key (denoted as "Meas") is depressed and the SSG measures site noise and stiffness as a function of frequency. The gauge will display average stiffness, lb/in (Mn/m) or modulus, psi (MPa). The SSG can store 500 measurements while working in operational mode. It has a stiffness measurement range from 17,000 lb/in to 126,000 lb/in (3 to 22.1 MN/m) and a Young's Modulus measurement range of 3,800 to 28,000 psi (26.2 to 193 MPa). The depth of influence is between four and six inches from the surface (Fielder et al, 1998). The SSG simulates soil stress levels (4 psi or 28 kPa) common for pavement, bedding, and foundation applications (Fielder et al, 1998).

2.2.5 Limerock Bearing Ratio

Limerock Bearing Ratio tests have long been used for flexible pavement design in Florida. The LBR test is a modified CBR test, which has become one of the most widely, used and recognized soil strength parameters. The LBR test as used in flexible pavement design in Florida is a measure of the bearing capacity of a soil. The test consists of plunging a 3 in² circular piston at a specified rate and measuring the load required to force the piston into a soil specimen 0.1 inch, divided by the load in psi required to force the same piston 0.1 inch into a crushed limerock sample. The standard penetration load for crushed limerock in Florida is 800 psi. This ratio is multiplied by 100 and the percent sign is omitted thus given the LBR value (Ping and Yu, 1994). Field LBR testing was performed according to ASTM D 4429-93 (*Standard Test Method for CBR (California Bearing Ratio) of Soils in Place*). The CBR values were converted to LBR values by multiplying them by 1.25. The 1.25-multiplier results when the standard CBR load at 1000 psi

is divided by the standard LBR load at 800 psi for the Florida Department of Transportation test method (Florida Method of Test for Limerock Bearing Ratio FM-5-515).

Rodriquez (2001) conducted a field study to analyze the construction and performance of RAP in the field. RAP used in the study classified as a well-graded sand (SW) according to the Unified Soil Classification System (USCS). Among the conclusions Rodriquez (2001) formulated was that, according to field LBR theory RAP is not a feasible material for use as a base because it does not sustain the FDOT minimum requirements for base material (LBR = 100). However, RAP did sustain a minimum LBR of 40 for approximately 80% of the tests and therefore has potential to be utilized as a subbase and/or subgrade.

The Florida Department of Transportation conducted a study to evaluate the use of UNRAP (untreated RAP) as a base course material in the construction of road shoulders. Limerock was used as a control material. The UNRAP classified as a GW (well-graded gravel) based on the USCS. Laboratory LBR's were conducted on both soaked and unsoaked samples. The LBR values ranged from 25 to 30 for the soaked and 29 to 38 for the unsoaked (Sayed, et al., 1993). Field LBR's were also conducted during the study. The average field LBR attained for the UNRAP was 29, with values ranging from 15 to 54. The average field LBR on the limerock was 77 (Sayed, et al., 1993).

2.3 Relative Humidity

Relative humidity is the most common way of describing atmospheric moisture. The relative humidity (RH) is an indicator of how close the air is to being saturated. RH is the ratio of the amount of water vapor actually in the air to the maximum amount of water vapor required for saturation at that particular temperature (Ahrens, 2001). This relationship is shown below in equation format.

$$RH = \frac{water \, vapor \, content}{water \, vapor \, capacity} \times 100 \qquad (2.6)$$

Relative humidity is usually expressed as a percent. For example air with a 50% RH contains one-half the amount required for saturation. Air with 100% RH is said to be saturated, and air with relative humidity greater than 100% is said to be supersaturated. Relative humidity can be changed by changing the air's water vapor content or by changing the air temperature (Ahrens, 2001). RH is inversely related to air temperature. With constant water vapor content, increasing air temperature lowers the relative humidity, while decreasing air temperature will increase the relative humidity. Therefore relative humidity will be the highest during the morning hours and decrease as the air temperature warms up during the day (Ahrens, 2001).

2.4 Previous Environmental Lab Testing

Townsend and Brantley (1998) investigated the leaching characteristics of RAP by conducting both batch-scale and leaching columns tests. The primary leachable pollutants investigated were volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), and selected heavy metals (Ba, Ca, Cr, Cu, Pb, Ni, and Zn).

The batch-scale tests were EPA TCLP and SPLP that were performed to determine if the RAP tested was a hazardous waste. Both TCLP and SPLP results

showed that none of the compounds analyzed in the study were detected in the leachate, indicating that the RAP tested was not a hazardous waste.

In the column leaching tests, approximately 60 lbs of RAP material were used to fill a three-foot column. Duplicate columns were subjected to saturated and unsaturated conditions. Leachate samples collected from tested columns continued for a total of 42 days and were analyzed for the same parameters as the batch-scale tests. Concentrations of selected heavy metals, except lead (Pb), in column leachate were below detection limits. Lead was detected at the level slightly above the groundwater guidance concentration, i.e., 15 ppb, but decreased over time. The study found that one unsaturated column and three saturated columns exceeded the 15-ppb groundwater guidance concentrations for lead. However, all but one column dropped to below 1 ppb by the end of the study. Townsend and Brantley (1998) reported lead was observed in the greatest concentrations in the oldest RAP samples and suggested that the lead was not a result of the leaching of the aggregate or asphalt cement, but rather a result of vehicle traffic and emissions.

The study concluded that, overall RAP poses minimal risk to groundwater as a result of pollutant leaching under normal land disposal or beneficial reuse. Conditions of possible concern would be RAP used in saturated environments where little dilution occurred.

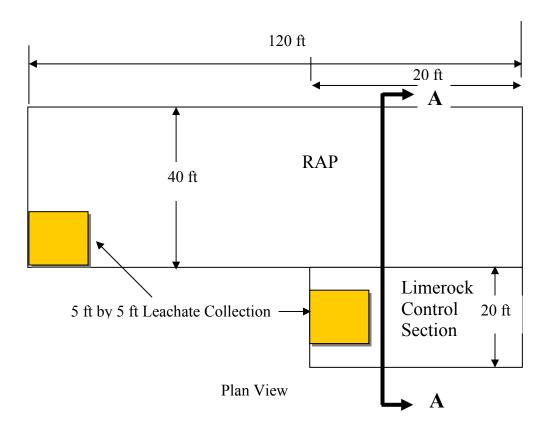
3. Methodology

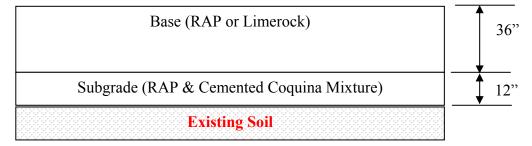
3.1 Material Sampling for Field Site Construction

RAP samples were obtained from the hammermill post-milling processed stockpile at the APAC-Florida, Inc. asphalt plant located in Melbourne, Florida. Several hundred pounds of this material were taken, in accordance with ASTM D75 "Standard Practice for Sampling Aggregates", to insure that a thorough laboratory-testing program could be completed to aid in the construction of the field site. The hammermill grinder separates the larger RAP material with a screen before it is fed into a swing-hammer impact crusher. The swing-hammer impact crusher reduces material to sizes of ½ an inch or smaller. The processing of RAP is most commonly performed throughout the United States with the hammermill grinder. Limerock from the Mazak Mine (FDOT mine# 18-522) located in Webster, Florida was also sampled following ASTM D75 standards.

3.1.1 Grain Size Distribution

Sieve analyses were performed following ASTM C136-93, *Standard Test Method for Sieve Analysis of Fine and Course Aggregates*. RAP and limerock samples were dried at room temperature before performing the sieve analyses. The sieve sizes used during the sieve analysis were 1.5 inch, 0.75 inch, 0.375 inch, #4, #8, #16, #30, #60, #100, and #200. Three samples of approximately 1500 grams each were tested to produce an average gradation curve for each material. From the gradation curves the D_{10} , D_{30} , and D_{60} , gradation parameters were determined. These parameters represent the grain diameter (in millimeters) at 10, 30, and 60 percent passing by weight (Holtz and Kovacs, 1981). The coefficient of curvature (C_c) and uniformity (C_u) were also calculated. Classification of the materials was made using the United Soil Classification System (USCS) and the American Association for State Highway Transportation Officials (AASHTO).


3.1.2 Asphalt Content


Asphalt content tests were performed on RAP samples using test method FM 5-563 (*Quantitative Determination of Asphalt Content from Asphalt paving Mixtures by the Ignition Method*) of the <u>2000 Florida Sampling and Testing</u> <u>Methods Manual</u>. Four samples of approximately 1550 grams were tested, to determine an average asphalt content value. The FDOT, District 5 Materials and Research Division, located in Deland, Florida conducted the tests.

3.2 Field Site Development and Layout

A field site has been chosen for construction at the APAC-Florida, Central Florida Division – Melbourne Branch asphalt plant. The site was approximately 60 feet by 120 feet. It was divided into two major sections, one was constructed of RAP and the other was constructed from limerock. Each section included a 5 foot by 5 foot collection system for the collection of the runoff and leachate to be studied as part of FDOT research contract "*Developing Specifications for Using*

Recycled Asphalt Pavement as Base, Subbase, or General Fill Materials: Phase II". A drawing of the field site layout is presented in Figure 3.1.

Cross-Sectional A-A

Figure 3.1 Field Site Layout (Not to Scale)

3.3 Field Site Construction

Construction of the field test site began on Monday, April 16, 2001 and required approximately six days to complete. No rain occurred during construction and temperatures averaged 78°F. The material used at the Phase I field site of this project was removed to a depth of 12-inches below the surface. The materials removed consisted of RAP and cemented coquina. They were remixed with a tiller and compacted with ten passes from a smooth drum vibratory roller, to form a subgrade for the new site. Figure 3.2 shows the mixing of the materials to create the uniform subgrade.

Figure 3.2 Mixing of RAP and Cemented Coquina from Phase I to form uniform subgrade for Phase II

After the subgrade was constructed the first lifts of RAP and limerock control were placed. In order to achieve a compacted lift thickness of 6-inches, material was placed in 8-inch loose lifts. Each lift of RAP and limerock was compacted using a smooth drum vibratory compactor at ten passes as shown in Figure 3.3.

Figure 3.3 Vibratory Compaction of 1st Lift

Nuclear density readings and Calcium Carbide Gas Pressure Moisture tests, also known as speedy moisture tests, were performed after each lift installation. The corresponding densities and moisture contents recorded during construction are given in Appendix A. Six-inch lifts were placed until a total thickness of 36 inches was achieved. The constructed field site is shown in Figure 3.4.

Figure 3.4 Completed Highway Materials Test Field Site

3.4 Testing Cycles

Table 3.1 shows the type of tests and the number of tests per cycle that were conducted at the field site. The tests were performed during the first, second, fourth, sixth, and eighth week following construction. The testing program started on April 25, 2001 and concluded on June 14, 2001.

Test Name	Tests Pe	er Cycle	Avg. Test Time	
Test Name	RAP	Limerock	(minutes)	
Falling Weight Deflectometer	21	4	< 5	
Clegg Impact Test	24	9	< 5	
Soil Stiffness Gauge	24	9	< 5	
Limerock Bearing Ratio	8	3	< 30	
Nuclear Densometer	8	3	< 5	
Calcium Carbide Gas Pressure Moisture Test	5	3	< 5	
Temperature and Humidity	Continuous	N/A	N/A	

Table 3.1 Test Index

A testing grid was developed to maximize the number of tests performed per cycle space. One of the major criteria for determining the test grid layout was to establish a layout that accounts for the influence zone produced by the destructive tests. It was assumed that destructive tests influence five feet of surrounding soil in any direction; therefore adequate spacing was required to minimally skew subsequent tests. Figure 3.5 shows a schematic of the testing grid layout. The grid layout is divided into two main sections, one for RAP and one for limerock. The numbers 1.01 through 4.04 represent FWD test locations. FWD tests were conducted in four rows. The rows are numbered 1 through 4, with each row being subdivided into locations labeled .01, .02, .03 etc. The numbers 1 through 11 represent Limerock Bearing Ratio (LBR), Clegg Impact Test, Soil Stiffness Gauge (SSG), and Nuclear Densometer test locations.

	Limerock									
Row 4	4.01	11	4.02	10	4.03	9	4.04			
							AP			
Row 3	3.01		3.02		3.03	R	ар 3.04	3.05	3.06	3.07
Row 3	8				7			6		5
Row 2	2.01		2.02		2.03		2.04	2.05	2.06	2.07
	4				3			2		1
Row 1	1.01		1.02		1.03		1.04	1.05	1.06	1.07

Figure 3.5 Testing Grid Layout

3.5 Testing Procedures

3.5.1 Falling Weight Deflectometer

No specifications were found for conducting the FWD test. Twenty-five tests were performed per test cycle, twenty-one on RAP and four on limerock. Each test took approximately two minutes to complete. For each test location three load levels were targeted, 6000, 9000, and 12000 lbf. Deflections from seven geophones spaced at 0, 8, 12, 18, 24, 36, and 60 inches from the load plate were recorded. Temperature data was also recorded. All data was obtained in both hardcopy and 3.5-inch floppy disk format.

3.5.2 Clegg Impact Test

Tests were performed according to ASTM D 5874 (*Determination of the Impact Value (IV) of a Soil*). Thirty-three tests were performed per testing cycle, twenty-four on the RAP and nine on the limerock. Similarly to the FWD, the Clegg test took about one minute to complete. At each test location three Clegg tests were performed, the tests were centered around the location of the Nuclear Densometer tests. The Clegg hammer was dropped four times on the same location, with the highest value of the four used for data analysis (Clegg, 1980).

3.5.3 Soil Stiffness Gauge

Standard specifications governing how to perform this test have not yet been developed since this device is relatively new. Thirty-three tests were performed per testing cycle, twenty-four on the RAP and nine on the limerock. At each test location three SSG tests were performed, the tests were centered around the location of the Nuclear Densometer tests. Each test was completed in about two minutes. The average of all three tests were taken to establish a stiffness value for each location.

3.5.4 Limerock Bearing Ratio

LBR values were calculated by performing field CBR tests according to ASTM D 4429-93 (*Standard Test Method for CBR (California Bearing Ratio) of Soils in Place*). Eleven tests were performed per testing cycle, eight on the RAP and three on the limerock. Field CBR tests required approximately 25 minutes to complete. At each test location one field CBR was performed, the tests were averaged to generate one field CBR value for RAP and one field CBR value for limerock per testing cycle. These values were then converted to field LBR values using the following equation (Florida Method of Test for Limerock Bearing Ratio FM-5-515), as described in Section 2.2.5:

$$LBR = 1.25CBR \qquad (3.1)$$

3.5.5 Calcium Carbide Gas Pressure Moisture Tester

Calcium Carbide Gas Pressure Moisture tests were performed according to FM 5-507 (*Determination of Moisture Content by Means of a Calcium Carbide Gas Pressure Moisture Tester*) of the <u>1994 Florida Sampling and Testing Methods</u> <u>Manual</u>. These tests were performed at the site by FDOT personnel to determine in-situ moisture contents.

Three tests were performed on each material per testing cycle. The tests were averaged to obtain a moisture content for each material. The average test time for Calcium Carbide Gas Pressure Moisture tests was about five minutes.

3.5.6 Nuclear Densometer

Wet Density testing was performed according to FM 1-T 238 (*Density of Soils and Bituminous Concrete Mixtures In Place By the Nuclear Method*) of the <u>1994 Florida Sampling and Testing Methods Manual</u>. FDOT personnel performed the tests and each test required about two minutes to perform.

Eleven tests were performed per testing cycle, eight on the RAP and three on the limerock. At each test location two nuclear density tests were performed, one at six inches and one at twelve inches. The wet density for each location was recorded. Moisture contents taken from the Calcium Carbide Gas Pressure Moisture Tester were used to calculate dry densities. The nuclear densometer equipment records moisture contents for materials approved by the state, such as cemented coquina and limerock. RAP is not an approved material; therefore moisture contents were obtained using a Calcium Carbide Gas Pressure Moisture Tester. The tests were averaged giving an average dry density for RAP and one for limerock per testing cycle.

3.5.7 <u>Temperature and Humidity Loggers</u>

Data loggers were used to monitor air and ground temperature as well as humidity over the course of this investigation. Air temperature and humidity were monitored using HOBO[®] H8 Pro RH/Temperature Loggers. A photograph of the HOBO logger can be viewed in Figure 3.6.

Figure 3.6 HOBO[®] H8 Pro RH/Temperature Loggers

The logger was fastened to a stake using Velcro strips and placed on top of a soil stockpile adjacent to the field site. A plastic disc was stapled to the stake to serve as a rain shield, protecting the logger from direct rainfall. The logger was set to take readings every hour for the duration of the investigation. BoxCar 3.6 for Windows[®] was used to upload data from the loggers periodically.

Vemco[®] mini-log temperature probes were used to collect ground temperatures within the RAP. The Minilogs are data loggers that record temperature at a user programmed time interval. The minilog temperature probe is shown in Figure 3.7.

Figure 3.7 Vemco[®] Minilog Temperature Probe

Five probes were placed within a ³/₄ inch PVC pipe and spaced at 0, 6, 12, 18, and 30 inches below the surface. PVC tubing was chosen instead of metal tubing because metal tubing absorbs larger amounts of heat that adversely affect the temperatures. Spacing between the probes was controlled using half inch caulking rod. The caulking rod also served as an insulation device, controlling the heat transfer between each test zone. A schematic showing the testing layout is shown in Figure 3.8.

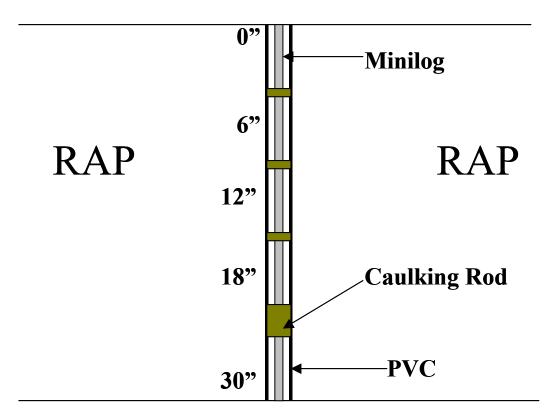


Figure 3.8 Ground Temperature Testing Layout

Temperatures were recorded every hour for the duration of the investigation. The probes were removed periodically and uploaded to a computer via the Minilog-Windows-PC[®] interface.

3.6 RAP-Soil Mixtures Methodology & Test Procedures

3.6.1 Introduction

RAP was mixed with a soil at various percentages by weight. The soil selected for mixing with RAP was a fine sand-trace of organics that was processed from muck obtained from a local dredging project and is referred to as fine sand for this investigation. Sieve analysis, Atterberg limits, specific gravity, asphalt content, and organic content tests were performed to characterize the RAP, fine sand, and RAP-soil mixtures. The engineering properties of the RAP and RAP-soil mixtures were evaluated by performing dry rodded unit weight, moisture-density, permeability, Limerock Bearing Ratio, static triaxial compression, and resilient modulus tests.

Dry rodded unit weight results were used to make initial decisions on the selection of RAP-soil mixtures to be used for further testing. Moisture-density curves were then developed to identify the optimum moisture contents and maximum dry unit weights of the selected mixtures. The remaining tests were conducted on RAP-soil mixtures compacted at their respective optimum moisture contents using modified Proctor compaction effort. Strength parameters of the mixtures were determined by the LBR, static triaxial compression, and resilient modulus tests. Drainage characteristics of the mixtures were evaluated through permeability tests.

42

3.6.2 Selection of RAP-Soil Mixtures

The RAP-soil mixtures used in this investigation were based on dry rodded unit weight tests performed on mixtures with varying RAP percentages. The results to be presented in Chapter 4, show a distinct peak dry rodded unit weight for a mixture containing 80% RAP. The dry rodded unit weight increased as the RAP percentage increased from 60 to 80, and then decreased as the RAP percentage increased from 80 to 100. Therefore, mixtures of RAP with a fine sand at the following proportions by weight were selected for further testing: 100% RAP, 80% RAP – 20% soil, and 60% RAP – 40% soil.

3.6.3 <u>Material Sampling</u>

RAP samples were collected from the top 12-inch lift of the field site (Section 3.2) following the FDOT *Manual of Florida Sampling and Testing Methods 1994*, procedure FM 1-T 002, "Sampling Coarse and Fine Aggregate." The RAP used in the construction of the field site was obtained from a stockpile of hammermill post-milling processed RAP at the APAC-Florida, Central Florida Division – Melbourne Branch asphalt plant.

The fine sand used for mixing with RAP was processed from muck obtained from a spoil storage/dewatering area located at the intersection of US1 and Conlan Blvd. in Melbourne, Florida. The material was dredged from the mouth of Turkey Creek by the Saint Johns River Water Management District and transported to the spoil area. The spoil area serves as a large settling pond to separate the sediments and water (BCI, 1996). After the solids settle to the bottom, the clear liquid is drained and the solids allowed to dry by evaporation. To improve the drying process, solids were removed from the bottom of the settling pond and spread on an open field around the spoil area, increasing the surface area and thus allowing for quicker evaporation to take place. Samples for this study were collected over a period of 12 months at different locations of the spread material. The choice of location for sampling depended on the visual characteristics of the soil. Typically the dryer material displayed a lighter color than wet material. Dry material was preferred for ease of handling and reduced drying time.

3.6.4 Sample Preparation

All the RAP used for testing was air dried at room temperature and modified in size according to procedures outlined in section 3.2 of FM 5-521 and FM 5-515. The RAP obtained from the field was air dried for 4 to 5 days on flat metal trays at room temperature (approximately 75°F). RAP was air dried rather than oven dried to prevent changes in its behavior due to the presence of asphalt binder. The size modification follows the sample preparation procedure for the Modified Proctor Compaction and Limerock Bearing Ratio tests, and was maintained for the remaining tests to allow for a relatively constant grain size distribution throughout the testing program. Material passing the 2 inch sieve and retained on the ³/₄ inch sieve was weighed and replaced by an equal weight of material passing the ³/₄ inch sieve and retained on the # 4 sieve. Material retained on the 2 inch sieve was discarded. The modified RAP was reduced for laboratory mixing and testing by the quartering method outlined in FM 1-T 248, "Reducing Field Samples of Aggregate to Testing Size."

The material obtained from the spoil storage/dewatering area was ovendried at 60°C. Dry solid particles larger than 1 inch were reduced in size using a 10 pound hammer with an 18 inch drop height. The particles were further reduced in size using a soil grinder. The ground material passing the #40 sieve was used in the RAP-soil mixtures and the remaining material retained on the #40 sieve discarded.

3.6.5 Test Procedures

Physical and engineering properties of the RAP, fine sand, and RAP-soil mixtures were determined following either the FDOT *Manual of Florida Sampling and Testing Methods 1994* (Florida Methods) or ASTM standards where applicable.

3.6.5.1 Physical Properties

A summary of the laboratory tests conducted to characterize the RAP, fine sand, and RAP-soil mixtures is presented in Table 3.2.

Table 3.2. Summary of laboratory tests and procedures for physical properties.

Laboratory Test	Procedure	Description
Sieve Analysis	FM 1-T 027 / AASHTO T27	Sieve Analysis of Fine and Coarse Aggregates
Atterberg Limits	FM 1-T 089 / AASHTO T89	Determining the Liquid Limit of Soils
	FM 1-T 090 / AASHTO T90	Determining the Plastic Limit and Plasticity Index of Soils
Specific Gravity	FM 1-T 100 / AASHTO T100	Specific Gravity of Soils
	FM 1-T 085	Specific Gravity and Absorption of Coarse Aggregates
Asphalt Content	FM 5-563	Quantitative Determination of Asphalt Content from Asphalt
		Paving Mixtures by the Ignition Method
Organic Content	FM 1-T 267	Determination of Organic Content in Soils by Loss on Ignition

The grain-size distributions of RAP, fine sand, and RAP-soil mixtures were determined by performing sieve analyses following FM 1-T 027. U.S. standard

sieve sizes of 1.5 inch, 0.75 inch, 0.375 inch, #4, #8, #16, #30, #60, #100, and #200 were used for the RAP and RAP-soil mixtures. Air-dried samples weighing approximately 10 pounds were used for each sieve analysis. For the fine sand, a 1½ pound sample and the U.S. standard sieve sizes #40, #60, #140, #200, and #270 were used. The sieve analyses conducted were based on dry sieving. Atterberg limits of the fine sand were also determined for soil classification purposes according to FM 1-T 089 and FM 1-T 090.

Specific gravity of RAP and RAP-soil mixtures was determined following FM 1-T 100 for material passing the #4 (4.75 mm) sieve, and FM 1-T 085 for material retained on the #4 (4.75 mm) sieve. A weighted average specific gravity was calculated from the percent material and specific gravity of the material passing and retained on the #4 sieve. The specific gravity of the fine sand was determined by FM 1-T 100.

The asphalt content of RAP was determined following FM 5-563. Two samples weighing approximately 1200 grams were tested and an average asphalt content calculated. The tests were conducted by FDOT personnel at the State Materials Office in Gainesville, Florida.

The organic content of the fine sand was determined following FM 1-T 267. Three samples weighing approximately 40 grams were oven-dried for 24 hours at 110°C and then placed in a furnace for 6 hours at a temperature of 445°C. An average organic content was calculated from the three samples.

46

3.6.5.2 Engineering Properties

A summary of the laboratory tests performed to evaluate the engineering properties of the RAP and RAP-soil mixtures is presented in Table 3.3.

Table 3.3. Summary of laboratory tests and procedures for engineering properties.

Laboratory Test	Procedure	Description
Dry Rodded Unit Weight	ASTM C 29 / C 29 M	Standard Test Method for Unit Weight and Voids in Aggregate
Moisture - Density	FM 5-521 [FM 1-T 180]	Moisture Density Relations of Soils Using 10-lb. [4.54 kg] Rammer and an 18-in. [457 mm] Drop*
Permeability	FM 1-T 215 / AASHTO T215	Permeability of Granular Soils (Constant Head)
	FM 5-513	Coefficient of Permeability - Falling Head Method
	ASTM D 5084	Standard Test Method for Measurement of Hydraulic Conductivity of Saturated Porous Materials
		Using a Flexible Wall Permeameter
LBR	FM 5-515	Limerock Bearing Ratio
Static Triaxial Compression	ASTM D 4767	Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils **
	Procedure by Head (1986)	Manual of Soil Laboratory Testing: Volume 3 by Head (1986) **
Resilient Modulus	LTTP Protocol P46	Resilient Modulus of Unbound Granular Base/Subbase Materials and Subgrade Soils

*This compaction procedure is a modification of AASHTO T 180-74, Method D

**The sample preparation and testing procedures presented in ASTM D 4767 and the Manual of Soil Laboratory Testing: Volume 3 were

adopted in performing the consolidated-drained (CD) triaxial tests

3.6.5.2.1 Dry Rodded Unit Weight

Dry rodded unit weight tests were conducted on RAP-soil mixtures following ASTM C29 / C29 M (ASTM, 1994). A 6 inch diameter, 9 inch high compaction mold (mold + collar) was used, yielding a volume of 0.147 ft³. The material was compacted with a tamping rod in 3 equal layers and 25 strokes evenly distributed over the surface area per layer. The tamping rod was 24 inches long and 5/8 inch in diameter with a hemispherical tip. Two separate samples were prepared for testing. Tests were conducted starting with a 100% RAP sample and incrementally adding the required amount of fine sand (i.e. material passing the #40 sieve size) to obtain the desired mix proportions. The first series of tests were conducted at mixtures containing 100, 90, 80, 70, and 60% RAP. A second series was performed at mixtures of 100, 90, 85, 80, 75, 70, 65, and 60 % RAP. An average dry rodded unit weight was calculated from the two trials.

3.6.5.2.2 Moisture-Density

The relationship between dry density and moisture content of the RAP-soil mixtures was determined according to FM 5-521 (FM 1-T 180). Samples were compacted in 5 equal layers with 56 blows per layer using a 10 pound hammer and an 18 inch drop height, yielding a compactive effort of 56,000 ft-lb/ft³. Compaction was done with a mechanical compaction machine manufactured by Ploog Engineering Company, Inc. Standard 6 inch diameter compaction molds with volumes of 0.075 ft³ were used. Samples were prepared at moisture contents ranging from 3 to 11% and allowed to hydrate overnight prior to compaction.

3.6.5.2.3 Permeability

Permeability of the 100% RAP specimens was determined by constant and falling head tests according to FM 1-T 215 and FM 5-513 respectively. Samples were compacted in a standard 4 inch diameter compaction mold with a ¹/₄ inch spacer disk. The spacer disk was used to provide the necessary spacing for the placement of the porous stone at the top of the specimen in the rigid wall permeameter. After compaction, the specimens were prepared in the rigid wall permeameter and left to permeate overnight with the constant head setup to ensure proper saturation prior to testing. Samples were tested first using the constant head setup. Tap water was used as the permeant for testing.

The permeability of the 80 and 60% RAP samples were expected to be lower than 100% RAP and were determined using a flexible wall permeameter according to ASTM D 5084, Method C – Falling Head, rising tailwater elevation (ASTM, 2002). Samples were compacted in a 4 inch diameter mold (similar mold as for 100% RAP samples), weighed, and extruded with a hydraulic jack. The diameter and length were recorded prior to placement of the specimen in the permeability

cell. The sample was placed on a porous stone at the base pedestal of the cell, followed by a porous stone and top cap at the top of the sample. Filter paper was placed at the top and bottom specimen-porous stone interfaces. A latex membrane was placed around the sample and sealed with rubber O-rings. The chamber was filled with water and the drainage lines saturated. The test samples were saturated using back-pressure saturation and the degree of saturation was monitored by calculating the B-coefficient. The cell and backpressure were increased incrementally until a value of 0.95 or higher was obtained for the B-coefficient. A pressure difference of 5 psi was maintained between the cell and backpressure system during saturation and testing. Proper saturation of permeability samples using back-pressure typically took 4 to 5 days at cell pressures ranging from 80 to 90 psi. Deaired tap water was used as the permeant for testing.

Permeability tests for all samples were conducted at hydraulic gradients of 1, 2.5, 4.5, and 6. Three samples were prepared for the 100% RAP and 80% RAPsoil mixtures and three trials were performed at each gradient per sample. Due to long testing durations, only two 60% RAP-soil samples were tested, with two trials per gradient. The direction of flow through the samples was from bottom to top. All the permeability samples were compacted manually. A summary of the compaction characteristics of the permeability samples and a comparison to AASHTO T 180-74 Method D is presented in Table 3.4.

Compaction	Method D - modified	100% RAP	80% RAP	60% RAP	
	Moisture-density & LBR		Soil mixture	Soil mixture	
Mold:					
Volume (ft ³)	0.075	0.0317	0.0333	0.0333	
Diameter (in)	6	4	4	4	
Weight of hammer (lb)	10	10	10	10	
Height of drop of hammer (in)	18	18	18	18	
Number of layers of soil	5	5	5	5	
Number of blows per layer	56	24	25	25	
Compactive effort (ft-lb/ft3)	56000	56702	56246	56246	
% difference	-	1.3	0.4	0.4	

Table 3.4. Compaction characteristics of permeability samples.

3.6.5.2.4 Limerock Bearing Ratio

The bearing capacity of the RAP and RAP-soil mixtures was evaluated using LBR tests following FM 5-515. The LBR samples were compacted in a similar fashion as the moisture-density samples, with 5 equal layers and 56 blows per layer using a 10 pound hammer and an 18 inch drop height. Compaction was done with a mechanical compaction machine manufactured by Ploog Engineering Company, Inc. Standard 6 inch diameter compaction molds with perforated base plates were used. Samples were prepared at their respective optimum moisture contents and allowed to hydrate overnight prior to compaction. After compaction the samples were soaked in a water bath for two days prior to testing. LBR samples were tested as base and subgrade material. Samples tested as subgrade material were subjected to a surcharge of 15 pounds during testing. A total of four samples were tested for each RAP and RAP-soil mixture tested as base and subgrade material.

3.6.5.2.5 Static Triaxial Compression

The elastic modulus, maximum stress at failure, and shear strength of the RAP and RAP-soil mixtures was determined by consolidated-drained (CD) triaxial compression tests. The sample preparation and testing procedures followed in conducting the triaxial tests were adopted from ASTM D 4767, "Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils" (ASTM, 2002) and the "Manual of Soil Laboratory Testing: Volume 3" by Head (1986). Samples were prepared at their respective optimum moisture contents and allowed to hydrate overnight prior to compaction. A 4 inch diameter, 8.375 inch high mold was used for compaction. The material was manually compacted in 6 equal layers with 38 blows per layer using a 10 pound hammer and an 18 inch drop height, yielding a compactive effort of 56,153 ft-lb/ft³. The sample was weighed after compaction and then extruded with a hydraulic jack from the mold. The diameter and length were recorded prior to placement of the specimen in the triaxial cell. A porous stone and filter paper were placed on the base pedestal of the cell, after which eight ³/₄ inch wide filter paper strips were spaced radially on the circular filter paper placed on the porous stone. After placement of the sample, the filter paper strips were folded and attached vertically to the side of the specimen and folded on top. Another circular filter paper and porous stone was placed on top with a top cap. A latex membrane was placed around the sample and sealed with rubber O-rings. The chamber was filled with water and the drainage lines were left open to atmosphere. A triaxial sample is shown in Figure 3.9.

51

Figure 3.9. Triaxial sample of RAP-soil mixture on base pedestal

In drained triaxial compression tests water is allowed to enter or leave the sample while being compressed to reduce any excess pore water pressure build-up. For this to occur, compression must take place at a very slow rate. Most procedures for drained triaxial tests specify drainage only from the bottom of the sample. In order to reduce the time required for consolidation and compression, drainage was allowed to take place from the top and bottom of the sample. The addition of side drains (vertical filter paper strips) to drainage from both ends further reduces the time required for the consolidation and compression phase. By providing more drainage paths, any excess pore water pressure that might develop is able to dissipate more rapidly during the test. Because of the extensive time (4 to 5 days) required for proper saturation of the specimens, the triaxial compression tests were performed on partly saturated samples. After compaction the samples were consolidated until no major volume change was observed. Volume change

was measured with burettes open to atmosphere that were connected to the top and bottom drainage lines of the triaxial cell. The rate of loading during compression was estimated from consolidation results. A 60% RAP permeability sample was consolidated following procedures outlined by Head (1986). The maximum loading rate for samples with side drains was estimated to be 0.002 inch / minute. However, due to limitations of the loading machine, the slowest possible loading rate of 0.005 inch / minute was selected. Two samples were tested at effective consolidation pressures of 5 and 15 psi for each RAP and RAP-soil sample.

3.6.5.2.6 Resilient Modulus

Resilient modulus tests of the RAP and RAP-soil mixtures were conducted by FDOT personnel at the State Materials Office in Gainesville, Florida. The Long-Term Pavement Performance (LTPP) Protocol P46 test procedure for "Resilient Modulus of Unbound Granular Base/Subbase Materials and Subgrade Soils" as described by Alavi et al. (1997) was followed. The RAP obtained from the field was modified in size for testing by passing the entire sample through a jaw crusher set at a maximum opening of ³/₄ inch. The RAP and RAP-soil mixtures were prepared at their respective optimum moisture contents and allowed to hydrate overnight prior to compaction. The samples were compacted in 4 inch diameter, 8 inch high compaction molds using a mechanical compaction machine. Samples were compacted in 6 equal layers with 38 blows per layer using a 10 pound hammer and an 18 inch drop height, yielding a compactive effort of 58,785 ft-lb/ft³. After compaction the samples were extruded from the mold and placed on the triaxial base pedestal. A porous stone was placed at the top and bottom of the sample with filter paper placed between the sample and porous stones. A top cap was positioned on the top of the specimen followed by the placement of a latex membrane around the sample. The membrane was sealed to the base pedestal and top cap with rubber O-rings. The RAP and RAP-soil mixtures were tested as base

and subgrade material. Samples tested as base material were subjected to a confining pressure of 15 psi and conditioned by applying 500 repetitions of an axial load equivalent to a stress of 15 psi. The subgrade samples were subjected to a confining pressure of 6 psi and conditioned by applying 500 repetitions of an axial load equivalent to a stress of 4 psi. Conditioning eliminates the effects of specimen disturbances due to sampling, compaction, and specimen preparation procedures, and also aids in minimizing the effects of imperfect contacts between end platens and the specimen (Mohammad et al., 1994). Samples tested as base material were loaded following the sequence in Table 3.5. After conditioning (sequence # 0), the confining pressure and the maximum applied axial stress were adjusted to 3 psi and the sample loaded for 100 repetitions. The average deformation of the last five load repetitions were recorded. The test continued following the remaining sequences. A contact stress (seating load) of 10% of the maximum applied axial stress of each sequence was maintained on the sample during all the load repetitions. Samples tested as subgrade material were loaded following the sequence in Table 3.6. A closed-loop servo-hydraulic system was used for testing. Displacements were measured by externally mounted LVDT's and load cells were used for load measurements. The load repetitions used for sample conditioning and testing of the base and subgrade samples were applied using a haversine shaped load pulse with 0.1 seconds of loading and 0.9 seconds of rest. The top and bottom drainage lines were open to atmosphere prior and during the tests. Two tests were conducted for each RAP and RAP-soil mixture.

Sequence	Confir	ning	Max. A	Axial	Сус	Cyclic		act	Number of
#	Press	ure	Stress		Stress		Stress		Load
	(kPa)	(psi)	(kPa)	(psi)	(kPa)	(psi)	(kPa)	(psi)	Repetitions
0	103.4	15	103.4	15	93.1	13.5	10.3	1.5	500 - 1000
1	20.7	3	20.7	3	18.6	2.7	2.1	3.0	100
2	20.7	3	41.4	6	37.3	5.4	4.1	0.6	100
3	20.7	3	62.1	9	55.9	8.1	6.2	0.9	100
4	34.5	5	34.5	5	31.1	4.5	3.5	0.5	100
5	34.5	5	68.9	10	62.0	9.0	6.9	1.0	100
6	34.5	5	103.4	15	93.1	13.5	10.3	1.5	100
7	68.9	10	68.9	10	62.0	9.0	6.9	1.0	100
8	68.9	10	137.9	20	124.1	18.0	13.8	2.0	100
9	68.9	10	206.8	30	186.1	27.0	20.7	3.0	100
10	103.4	15	68.9	10	62.0	9.0	6.9	1.0	100
11	103.4	15	103.4	15	93.1	13.5	10.3	1.5	100
12	103.4	15	206.8	30	186.1	27.0	20.7	3.0	100
13	137.9	20	103.4	15	93.1	13.5	10.3	1.5	100
14	137.9	20	137.9	20	124.1	18.0	13.8	2.0	100
15	137.9	20	275.8	40	248.2	36.0	27.6	4.0	100

Table 3.5 Resilient modulus loading sequence for base materials.

Table 3.6 Resilient modulus loading sequence for subgrade materials.

Sequence	Confir	ning	Max. A	Axial	l Cyclic		Cont	act	Number of
#	Pressure		Stress Stress		SS	Stress		Load	
	(kPa)	(psi)	(kPa)	(psi)	(kPa)	(psi)	(kPa)	(psi)	Repetitions
0	41.4	6	27.6	4	24.8	3.6	2.8	0.4	500 - 1000
1	41.4	6	13.8	2	12.4	1.8	1.4	0.2	100
2	41.4	6	27.6	4	24.8	3.6	2.8	0.4	100
3	41.4	6	41.4	6	37.3	5.4	4.1	0.6	100
4	41.4	6	55.2	8	49.7	7.2	5.5	0.8	100
5	41.4	6	68.9	10	62.0	9.0	6.9	1.0	100
6	27.6	4	13.8	2	12.4	1.8	1.4	0.2	100
7	27.6	4	27.6	4	24.8	3.6	2.8	0.4	100
8	27.6	4	41.4	6	37.3	5.4	4.1	0.6	100
9	27.6	4	55.2	8	49.7	7.2	5.5	0.8	100
10	27.6	4	68.9	10	62.0	9.0	6.9	1.0	100
11	13.8	2	13.8	2	12.4	1.8	1.4	0.2	100
12	13.8	2	27.6	4	24.8	3.6	2.8	0.4	100
13	13.8	2	41.4	6	37.3	5.4	4.1	0.6	100
14	13.8	2	55.2	8	49.7	7.2	5.5	0.8	100
15	13.8	2	68.9	10	62.0	9.0	6.9	1.0	100

3.7 Preliminary Creep Testing Methodology

3.7.1 Typical Creep Behavior of Soils

Creep, or slow shear movements, begins to occur when shear stresses in soils increase as a function of the total shear strength. Generally sandy and gravelly soils can sustain shear stresses very close to their shear strength for long periods without failing, and is one of the reasons that these soils are superior materials for many applications. Although RAP is classified as an A-1-a soil, indicating that it is typically a gravel/sand mixture, it is still necessary to determine whether creep is a concern due to the asphalt content that the RAP possesses.

Creep behavior of soils under a constant stress may vary depending upon the level of the stress being applied. Under relatively low shearing stresses, creep movements may be small and cease after some period of time. Under higher stresses, creep movements may continue indefinitely. In some soils, continued application of stress may result in acceleration of the creep rate followed by complete rupture.

These time-dependent responses of soils may take on a variety of forms depending on such factors as soil type, soil structure, stress history, drainage conditions, type of loading, and other factors. It is necessary to determine into what pattern of long-term creep behavior RAP falls.

3.7.2 Development of Creep Testing Methodology

Although many studies have been performed on cohesive soils to determine creep behavior, very few have been completed with the focus on non-cohesive soils. As a result, no procedural guidelines were found for the testing of creep in a granular material such as RAP. Consequently, a preliminary testing method was derived by FIT from the basic underlying concepts and procedures applied for creep testing in cohesive soils, as well as LBR testing that has been performed on RAP.

Three factors were measured to evaluate the creep characteristics of RAP; stress, deflection, and time. The testing was conducted by using a *Brainard-Kilman Terraload Consolidation Load Frame*. Three samples were prepared for separate testing in 6-inch diameter proctor molds according to ASTM-1557 Method D with a moisture content of 10%, which is slightly wet of optimum. The three materials tested were 100% RAP, a RAP-soil mixture of 80% RAP and 20% soil, as well as for A-3 soil, which was used as the control. The general setup of the testing apparatus can be seen in Figure 3.10.

By evaluating several Load Penetration Curves from previous LBR testing, an ultimate strength of RAP was determined. With an estimated 800psi as the 100% ultimate strength level, various percentages of this strength were chosen for the application loads. The sample was loaded with a 1.95-inch diameter $(3in^2)$ piston, which is traditionally used for LBR testing. Loads were maintained for a minimum of 4000 minutes, provided that sample failure did not occur prior to this point. The samples were incrementally loaded with 33.5psi, 67psi, 134psi, and 268psi, which respectively correspond to 4.2%, 8.4%, 16.7% and 33.5% of the ultimate strength.

57

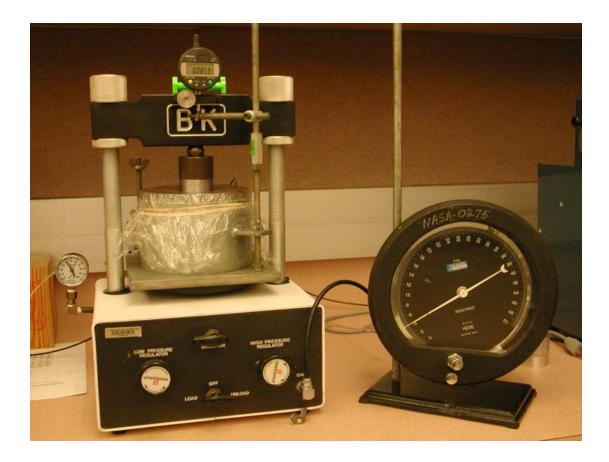


Figure 3.10 Setup of Creep Testing Apparatus

3.8 Environmental Testing Methodologies

3.8.1 Site Construction

The 5-foot by 5-foot runoff and leachate collection systems constructed as part of the field site were situated so as not to be disturbed by engineering evaluation on the site (See Figure 3.1). Perforated PVC piping (4-inch diameter) was included near the surface to collect surface waters and on the geomembrane to collect the leachate waters. The surface slopes, graded to approximately 2 %, were sufficient to cause water that contacted these areas to flow towards the collection system. The infiltrated water was prevented from passing through the RAP or limerock layer due to an impermeable 40-mil geomembrane that was placed beneath it. The perforated PVC pipes were wrapped in geotextile fabric designed to allow water to pass through but prevent clogging by the RAP or limerock particles. These pipes were sloped toward the outer edges of the collection system to 2-inch diameter pipes that were sloped towards the collection drums (See Figure 3.11). Two 55-gallon plastic drums were connected to the collection systems for both the surface runoff and leachate (See Figure 3.11). Following construction of the drainage system, both the RAP and Limerock sites were backfilled to final grade, by placing 8-inch loose lifts of material and compacting them with a vibratory compactor to 6-inch lifts. The density of the materials in these sections was not equivalent, because the compaction equipment (Figure 3.3) could not be used in these confined areas.

Figure 3.11 Photograph of Limerock Collection Systems prior to backfilling with Limerock

3.8.2 Environmental Field Monitoring

Figure 3.12 shows the completed RAP and Limerock collection systems. Depending on the rainfall events, environmental monitoring and sampling were performed monthly for the first three months and bi-monthly thereafter. Both surface runoff and leachate were collected for analysis of cadmium (Cd), chromium (Cr), lead (Pb), selenium (Se), and silver (Ag).

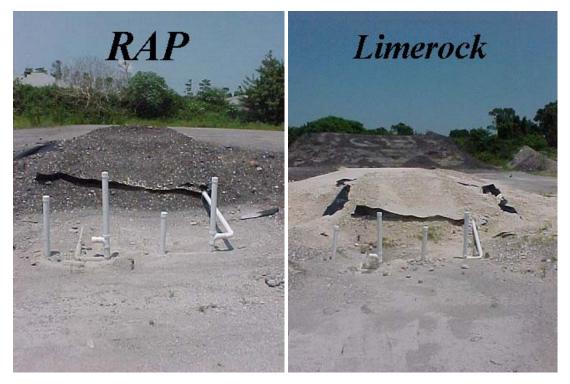


Figure 3.12 Completed RAP and Limerock Collection Systems

3.8.2.1 Sampling

Both surface and leachate water samples were collected from the RAP and limerock sites for chemical analysis. Samples were only collected when at least 2-inches of liquid had accumulated in the collection drums. Samples were collected immediately after a rainfall event and preserved immediately by acidifying to below pH 2 prior to exporting them back to the laboratory for analysis. Quantities of accumulated liquid samples in the collection drums were recorded to enable assessment of leaching characteristics of the RAP and the control limestone sites.

3.8.2.2 Chemical and Instrumental Analysis

A Perkin-Elmer Model 5100 Atomic Absorption Spectrophotometer (AAS) equipped with Zeeman background correction was used for leachate analysis. Analyses of trace metals were performed by using graphite furnace AAS. Different matrix modifier solutions were used for different elements to stabilize the analyte for analysis by the furnace AAS (Table 3.7).

Element	Modifier Solution
Ag	3 % (NH ₄)2HPO ₄ + 10 % NH ₄ NO ₃
Cd	10 % NH ₄ NO ₃
Cr	3 % (NH ₄) ₂ HPO ₄ + 10 % NH ₄ NO ₃
Pb	3 % (NH ₄) ₂ HPO ₄ + 10 % NH ₄ NO ₃
Se	$Mg(NO_3)_2$

 Table 3.7
 Modifier solutions used for graphite furnace AAS with Zeeman

 background correction

3.8.3 Laboratory Test Procedures

3.8.3.1 Toxicity Characteristic Leaching Procedure (TCLP)

RAP and Limerock were crushed using a mortar and pestle to reduce particle size less than 9.5 mm (3/8-inch) diameter. Three 40 g crushed samples of each material were quantitatively transferred to a 1 liter acid-cleaned polypropylene bottle. Extraction was carried out at a 20:1 liquid to solid ratio using diluted acetic acid. An 800 ml solution was added to each replicate. It was prepared by diluting 5.7 ml of glacial acetic (99.7%) with distilled-deionized water (DDW) followed by adding 64.3 ml of 1 N NaOH to a volume of 1 liter, pH 4.93 \pm 0.05.

The mixture was shaken mechanically for 18 hours. Within 2 hours of the mixing, separation of the material into its component liquid and solid phases was performed by filtering through a $0.4 \,\mu\text{m}$ Millipore[®] membrane filter. The filtrate was acidified with Ultrix[®] nitric acid to pH below 2 and was stored in acid-cleaned polypropylene bottles under refrigeration (4°C), until AAS analysis. Figure 3.13 is a flow chart that summarizes the TCLP test procedure.

3.8.3.2 Synthetic Precipitation Leaching Procedure (SPLP)

The leaching experiment for SPLP was similar to the TCLP procedure. In the SPLP test, a pH 4.2 synthetic acid rain solution was prepared according to EPA Method 1312 (draft) (U.S. EPA, 1994) by adding of a 60/40 weight percent mixture of sulfuric and nitric acids to DDW until pH 4.2 ± 0.05 was achieved (Table 3.8). A 1 N NaOH solution may be prepared to maintain pH to approximately 4.2. Figure 3.14 is a flow chart that summarizes the SPLP test procedure.

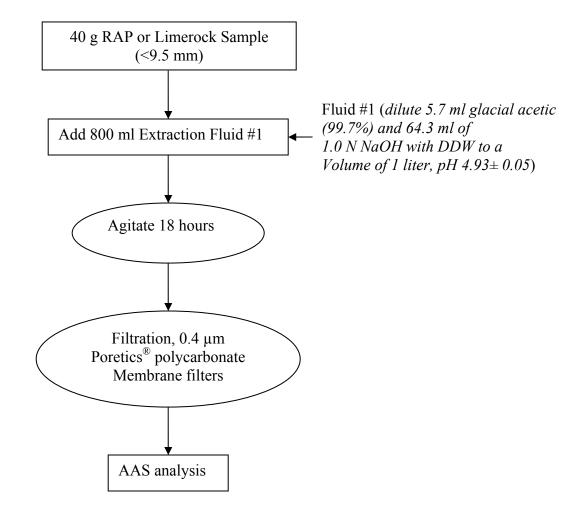


Figure 3.13 Flow chart shows the procedure of TCLP Test

Rain			
Chemical	Weight (g)		
NaNO ₃	0.1150		
KNO ₃	0.2196		
NH ₄ NO ₃	0.6480		
MgCl ₂	0.0821		
H_2SO_4	0.1755		
CaSO ₄	0.1057		

Table 3.8 Chemicals used to prepare a primary solution for a 4-liter Synthetic Acid

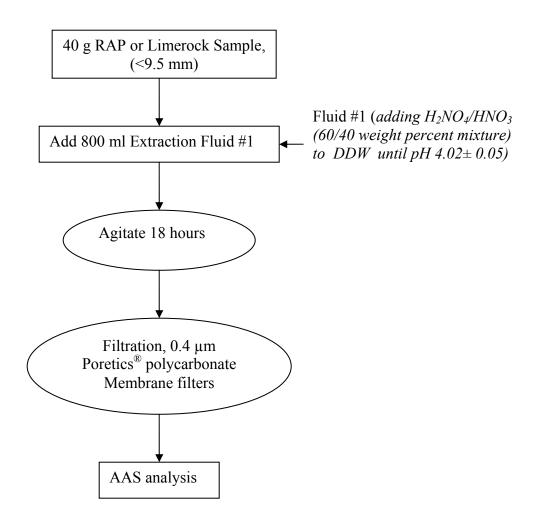


Figure 3.14 Flow chart shows the procedure of SPLP Test

3.8.3.3 Column Leaching Test

The column-leaching test was designed to determine the environmental impact of RAP being used as a subsurface highway material. Five columns were constructed to investigate leaching characteristics of RAP and limerock under controlled situations in laboratory.

The column-leaching test, modified from ASTM D2434-68 Standard Test Method for Permeability of Granular Soils (Constant Head) and ASTM D4874-95 Standard Test Method for Leaching Solid Material in a Column Apparatus, was conducted to investigate the leaching of RAP in controlled solution. The column was made of PVC, which had a diameter of 10.2 cm (4 in) and a height of 76.2 cm (30 in). The column was mounted on a platform and a screen and drainage tube was installed in the bottom of the column. Leachate from the column was collected over different time intervals. A schematic of the column is depicted in Figure 3.15. The rainfall simulation nozzle was installed on the top of the column, as shown in Figure 3.16, to simulate average rate of rainfall in the adjacent areas of the field site. The Standard Proctor Compaction technique (ASTM D-698) was used to compact the RAP and Limerock samples. Leaching column samples used in this study were compacted by using 2.5 kg (5.5 lb) PVC hammer and 12-inch (304.8 mm) drop that was the compaction technique according to the Standard Proctor compaction test (Das, 1989) modified for environmental concerns.

The construction of the column was carried out to simulate field conditions, including test material, thickness and compaction techniques. Leaching media for column tests were DDW and synthetic acid rain that was prepared according to the National Atmosphere Deposition Program (NADP) quality reference to simulate acid rain common to the Northeastern United States (U.S. EPA, 1990). Column leaching samples were collected for analysis of cadmium, chromium, lead, selenium, and silver. Analytical data generated in the laboratory study were correlated to the results of field study.

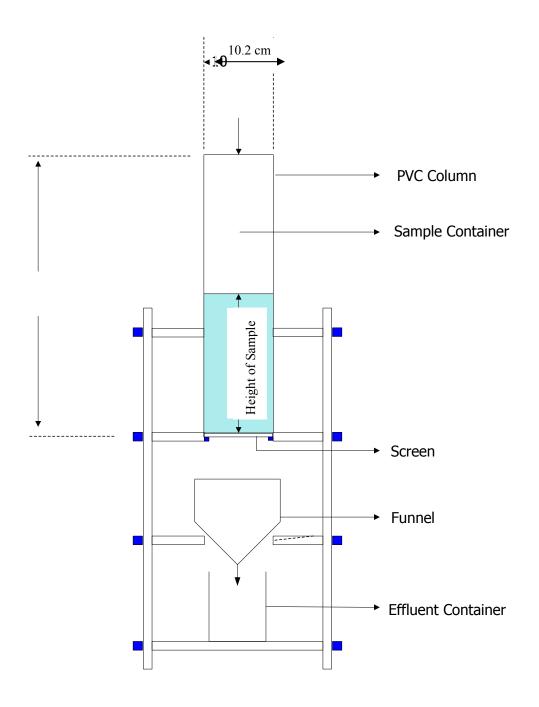


Figure 3.15 Schematic for column leaching test on RAP and Limerock

Figure 3.16 Photo of nozzle for distributing leaching media into column leaching test apparatus.

4. Presentation and Discussion of Results

4.1 Grain Size Distribution

The gradation curves for the RAP and limerock, using the average of three tests samples, are shown in Figure 4.1. RAP was classified as well-graded gravel (GW) and limerock classified as well graded sand (SW) using the Unified Soil Classification System (USCS). Based on the American Association for State Highway and Transportation Officials (AASHTO) standards, RAP was classified as an A-1-a and limerock classified as an A-1-b.

Table 4.1 shows a summary of the gradation parameters, D_{10} , D_{30} , and D_{60} . The coefficient of curvature (C_c) and coefficient of uniformity (C_u) are also presented in Table 4.1. The RAP being used compares well to the RAP used in the previous studies. The major difference is that the newest material was classified as gravel and the RAP samples from previous investigations were classified as both sand and gravel. The effective grain size (D_{10}) has an important influence on permeability (Holtz and Kovacs, 1981). It is proportional to permeability, meaning the larger the D_{10} the more permeable the material. RAP and limerock used in this investigation had effective grain sizes of 0.43 and 0.25 mm respectively. Based on its D_{10} -value, RAP would be expected to have better drainage characteristics than limerock.

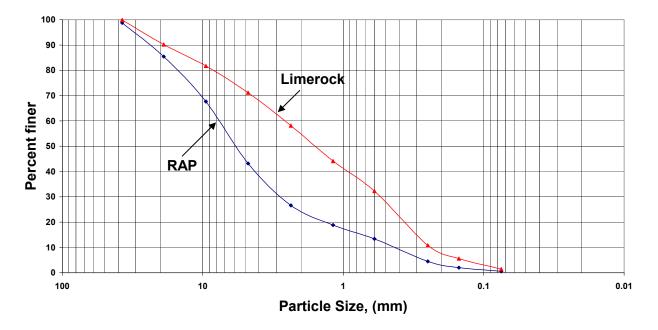


Figure 4.1 Particle Size Distributions for RAP and Limerock

	Present Study RAP	Present Study Limerock	Doig (2000) RAP	Montemayor (1998) RAP
D ₁₀ (mm)	0.43	0.25	0.35	0.28 to 0.32
D ₃₀ (mm)	2.8	0.55	1.9	1.3 to 2.0
D ₆₀ (mm)	7.6	2.6	3.7 to 5.0	5.1 to 6.0
Cu	17.7	10.4	10 to 14.3	17.1
C _c	2.4	0.47	1.5 to 2.1	1.2 to 2.2
USCS	GW	SW	SW	GW/SW
AASHTO	A-1-a	A-1-b	A-1-a	A-1-a

Table 4.1 Gradation Parameters and Classification of RAP and Limerock

4.2 Asphalt Content

The average asphalt content was 6.04 ± 0.01 percent for the RAP used in this investigation. Rodriquez (2001) and Montemayor (1998) reported asphalt contents of 6.73 and 5.67 percent respectively. The expected range for asphalt content is 4 to 8 percent by weight, for structural asphalt concrete mixtures used in Florida (Montemayor, 1998).

4.3 Falling Weight Deflectometer

Calculations done using MODULUS 5.1 indicated that very slight changes in layer thickness caused large changes in elastic moduli; the tolerance for layer thickness required by this program was not met at this field site. For this reason typical back calculations of elastic moduli were not performed. FWD data was used to calculate Impulse Stiffness Modulus (ISM) values according to equation 4.1 (Bush, 1990). The ISM is defined as the load in kips divided by the center plate deflection in mils and is an indication of the overall pavement system stiffness. The ISMs developed for comparison purposes was an average of twenty-one tests in RAP and four tests in limerock at three different load levels, per testing cycle. Raw ISM data is shown in Appendix B. A plot of ISM for RAP and limerock versus time is shown in Figures 4.2 for the 9000-lbf tests. Also included in the plot are one standard deviation error bars. Plots for the 6000-lbf and 12000-lbf tests are shown in Appendix C.

$$ISM = \frac{Load (kips)}{Center Plate Deflection (mils)}$$
(4.1)

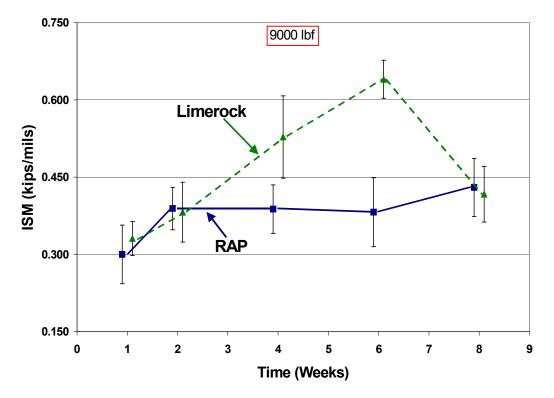


Figure 4.2 ISM vs. Time for RAP and Limerock (9000-lbf)

The ISM values obtained in the limerock were nearly identical to those obtained in RAP during the first and second week of testing. The fourth and sixth week ISM's showed RAP to be about 67% as stiff as limerock. Between the sixth and eighth testing interval the limerock's strength decreased by 42%, which made its ISM approximately equal to that of the RAP. Based on the ISM the strength gains for the RAP and limerock after eight weeks were 49% and 15% respectively.

Based on moisture content changes from week six to week eight, RAP proved to be less susceptible to moisture than limerock.

4.4 Clegg Impact Test

Twenty-four Clegg impact tests were conducted on RAP and nine were conducted on limerock per testing cycle. Each test consists of four drops of a 10-lb hammer over 18 inches. The Clegg Impact Value (CIV), which is the peak deceleration rate in tens of gravities, is obtained. All the CIV data collected during this investigation can be viewed in Appendix D. The graph of CIV versus time is shown in Figure 4.3. One standard deviation error bars are also included.

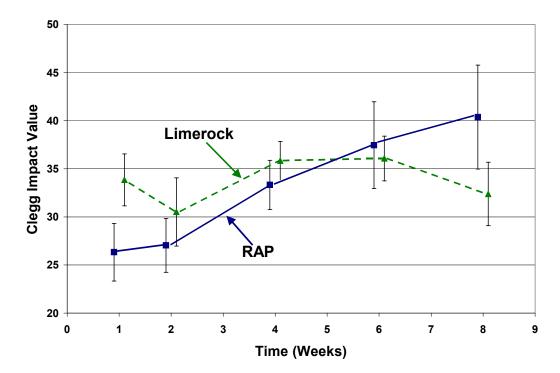


Figure 4.3 CIV vs. Time for RAP and Limerock

The CIV for limerock is higher than the CIV for RAP for four out of the five test intervals. The strength of RAP is steadily increasing over time based on the CIV. Again it can be seen that the strength of the limerock decreases between the sixth and eighth week. The limerock undergoes a 4% loss of CIV between during this period. Week one testing showed that the limerock was 28% stiffer than the RAP. Week two, week four and week six tests show the limerock as being 18%, 13%, and 4% stronger than RAP respectively. As time passes RAP's strength nears that of limerock, finally surpassing it during week eight. Using the CIV as an indicator, after eight weeks the RAP has become 55% stronger whereas the limerock has become 4% weaker. RAP has a large strength gain compared to relatively small strength gains seen in the limerock over the eight-week period. Based on the error bars it can be concluded that there is no change in the CIVs for limerock however, there is a definite increase in RAP CIVs over eight weeks. This research indicates that RAP is again less susceptible to moisture than limerock.

4.5 Soil Stiffness Gauge

Thirty-three Soil Stiffness Gauge tests were completed each test cycle, twenty-four on RAP and nine on limerock. At each test location three SSG tests were performed, the tests were centered around the location of the Nuclear Densometer tests. The average of all three tests were taken to establish a stiffness value for each location. Figure 4.4 presents the trends in stiffness values throughout the eight-week testing cycle. Included in the plot are one standard deviation error bars.

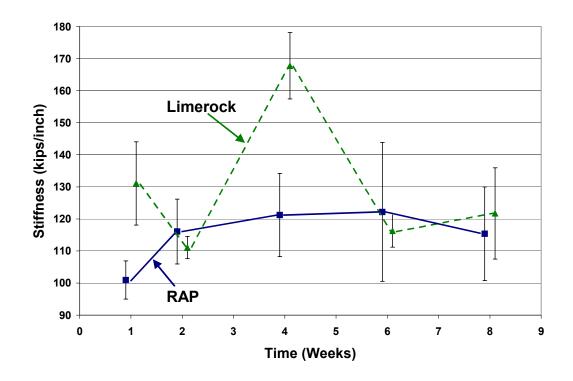


Figure 4.4 Stiffness vs. Time for RAP and Limerock

From week one to week two the stiffness of the RAP increased by 15% while the stiffness of the limerock decreased by 15%. The stiffness of the RAP continued to increase throughout week six and decreased slightly between weeks six and eight. Limerock had a more erratic behavior, decreasing and increasing between test intervals. During weeks two, six, and eight the RAP and limerock displayed approximately the same stiffness. At eight weeks the stiffness of RAP increased by 15% and the stiffness of the limerock decreased by 7% as compared to values at week one. A complete set of SSG data collected during this project is presented in Appendix E.

4.6 Field Limerock Bearing Ratio

Eight Limerock Bearing Ratio (LBR) tests were conducted on the RAP and three were conducted on the limerock each test interval. Figure 4.5 depicts the trends in LBR values throughout the first eight weeks following construction. Following construction the LBR values for RAP and limerock were 22 and 87 respectively. Throughout the eight weeks RAP never achieved an LBR value greater than 43. Limerock attained LBR values slightly greater than 100 during the week four and week six testing intervals. Following this peak period the LBR for limerock decreased by 38% due to moisture variations. From week one to week eight the LBR values of the RAP increased 55% as compared to a 31% decrease for the limerock, again indicating that RAP is less susceptible to moisture variations than limerock. Field LBR data is shown in Appendix F.

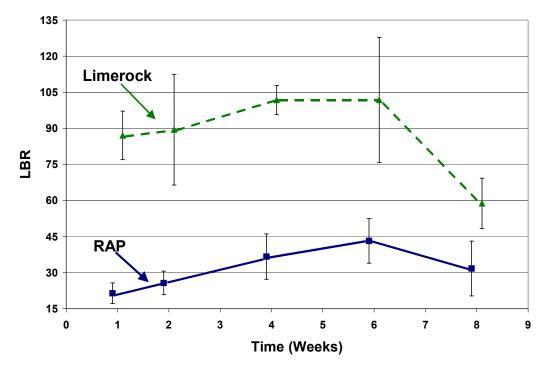


Figure 4.5 LBR vs. Time for RAP and Limerock

4.7 Comparisons Between Test Results

The previous sections showed the initial strength gains in RAP and limerock based on the FWD, Clegg, SSG, and LBR tests. In order to draw further conclusions from this data it was plotted as total percent increase versus test type, with the total increase being from week 1 to week 8. Figure 4.6 summarizes the strength variations from the field-testing at week eight.

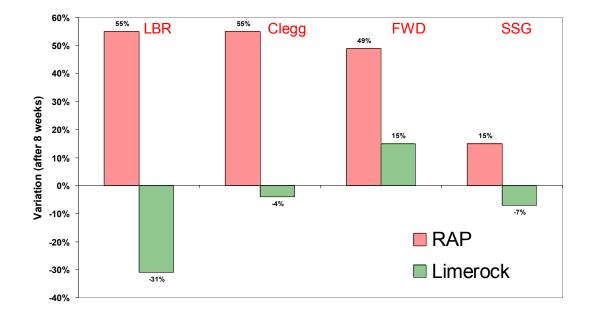


Figure 4.6 Strength and Stiffness Variations at Week 8 for RAP and Limerock

The LBR, Clegg, and FWD showed similar eight-week strength gains of 49 to 55 % in the RAP. SSG tests showed a 15% strength gain for RAP, which is nearly three times lower than the other tests. This may be due to the low strain levels of the SSG tests. The average strain level for the SSG tests performed over the eight weeks was 0.00032. The LBR, Clegg, and FWD tests produce higher strain levels.

As was the case when the individual plots were analyzed, the eightweek strength gains from limerock did not display the same consistency as the RAP data. The LBR, Clegg, and SSG tests showed strength decrease in the limerock of 31%, 3%, and 7% respectively, whereas, the FWD showed a strength increase of 15%.

In order to compare tests on the RAP material a ratio between the RAP and limerock test values was developed. The test value obtained for RAP was divided by the test value obtained for limerock. This ratio is plotted versus time in Figure 4.7.

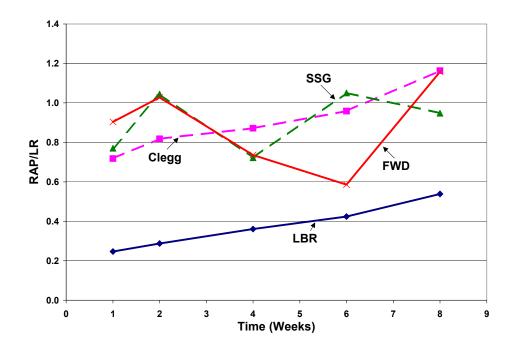


Figure 4.7 Ratio of Behavior in RAP to Behavior in Limerock

This field strength ratio showed that the LBR when compared to the Clegg, FWD, and SSG tests might not be properly representing the strength of the RAP. For instance, during week one, according to the LBR the RAP has 25% the strength of the limerock, whereas, the Clegg, FWD, and SSG are showing that the RAP is about 80% as strong as the limerock. This trend continues over the entire eightweek testing cycle. During week eight the LBR showed that the RAP is about 55% as strong as the limerock. Based on the FWD and Clegg tests during this same period the RAP is 18% stronger than the limerock while SSG tests show that the RAP and limerock are approximately equal in strength. Based on this ratio it can be concluded that the LBR tests underestimates the strength of RAP by a factor of three when compared to the Clegg, FWD, and SSG tests.

4.8 Density and Moisture Tests

Densities and moisture contents were determined by test methods FM 1-T 238 and FM 5-507 respectively. Upon completion of the field site the dry density of RAP was 118 pcf (1.89 g/cm³) and the dry density of limerock was 114 pcf (1.83 g/cm³). The RAP achieved higher densities than the limerock throughout the testing cycle. Subsequent tests showed little change in the density of RAP or limerock. Density can be depicted in terms of relative compaction. Relative compaction is defined as the ratio of the field dry density to the laboratory maximum dry density according to a specified standard test such as the standard or modified Proctor (Holtz and Kovacs, 1981). Maximum laboratory dry densities of 117 pcf (1.87 g/cm³) for the RAP (Doig, 2000) and 116 pcf (1.86 g/cm³s) for the limerock (Central Testing Laboratory, 2001) were reported. The relationship between relative compaction and time is shown in Figure 4.8.

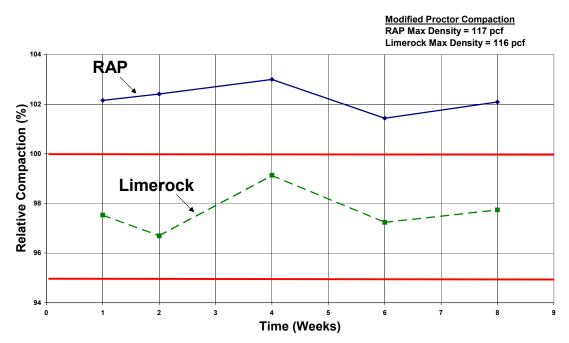


Figure 4.8 Relative Field Compaction vs. Time for RAP and Limerock

Relative compaction for RAP ranged from 101% to 103%. Limerock had an average relative compaction of 98% throughout the testing cycle. There were no noticeable changes in density over the eight-week testing cycle. It can be concluded that the same compaction effort will result in about 102% and 98% relative compaction for RAP and limerock respectively.

Moisture contents were taken each test cycle using the calcium carbide gas pressure moisture tester. Figure 4.9 shows the moisture contents versus time for the eight-week testing period.

The moisture content for RAP and limerock are based on an average of three tests. RAP's moisture content ranged between 3% and 4% and limerock's was between 7% and 9%. Density and moisture data collected throughout this investigation can be viewed in Appendix A.

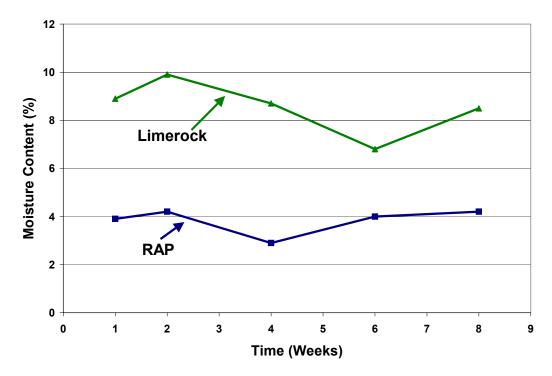


Figure 4.9 Moisture Content vs. Time for RAP and Limerock

4.9 Environmental Conditions

Air temperature and humidity were monitored throughout the eight-week testing cycle. Figure 4.10 displays this data. Between weeks one and six there was a steady increase in the daily high temperature, which is due to the transition between the spring and summer seasons. As expected the relative humidity also increased from spring to summer. The warmest period occurred between weeks six and eight. This period experienced average daily highs of 95°F and lows around 70°F. Relative humidity daily highs were slightly above 100% with lows in the mid 40% range. Daily high RAP surface and 6-inch depth temperatures are also included. Both data sets follow the same trend as the daily high ambient temperatures. Surface and 6-inch depth temperatures were consistently about 10°F and 3°F higher than the ambient temperature throughout the eight-week period.

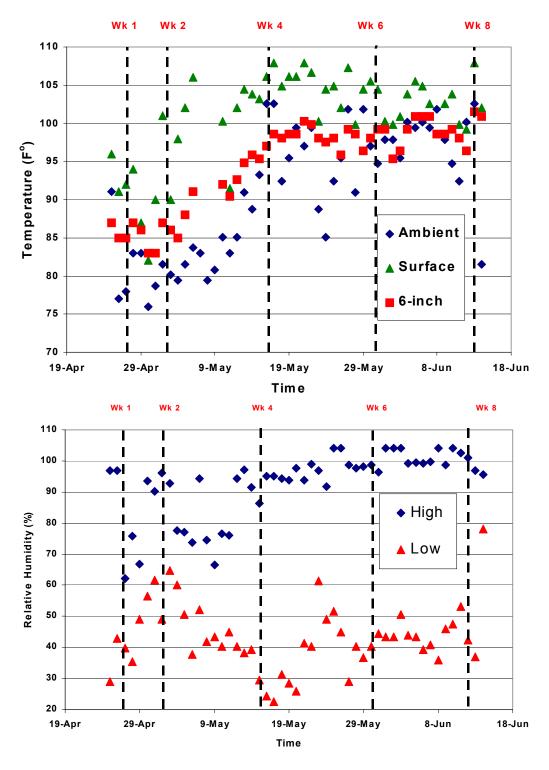


Figure 4.10 Daily High Temperatures and Relative Humidity vs. Time 84

4.10 Temperature Profiles

Previous research by Rodriquez (2001), Doig (2000) and Montemayor (1998) suggest that a relationship exists between temperature and the behavior of RAP. In-situ temperature monitoring took place over the course of this investigation using VEMCO mini-log temperature probes. Temperature profiles for the RAP were developed using this data by averaging the data over the initial eight-week study period. The average temperature profile is shown in Figure 4.11. One standard deviation error bars are also included in the plot. The temperature gradient ($\Delta T/\Delta Z$) decreases linearly. The average temperature of the RAP decreases from 95°F at the surface to 89°F at a depth of 30 inches.

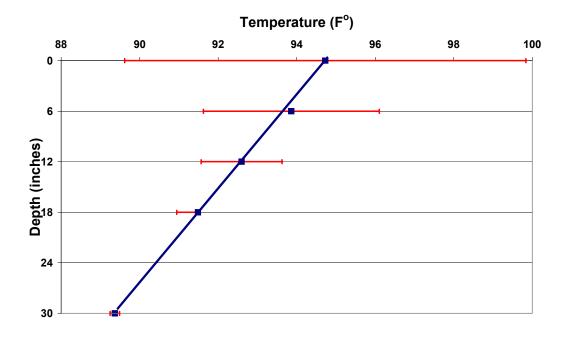
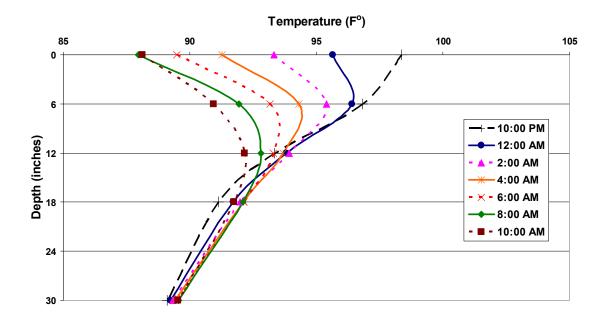



Figure 4.11 Average Temperature Profile for RAP (April 25 – June 14, 2001)

To gain a better understanding of the effects of temperature on RAP's behavior, one-day temperature profiles were developed. An average of the data taken over the eight-week period was used to construct these profiles. Figure 4.12 represents the temperature profile of the RAP from 10:00 pm to 8:00 pm. The upper plot shows the temperature profiles during the nighttime and morning hours (10:00 pm to 10:00 am). The lower plot shows the temperature profile during the afternoon and evening hours (12:00 pm to 8:00 pm). During the night and morning hours the surface temperature lags the temperatures taken at 6-inch and 12-inch depths by 3 to 4 degrees. Once the day begins to heat up the reverse of this phenomena takes place. The afternoon and evening hours show the surface temperatures. This effect can be seen by looking at the directional change of the curves in the upper and lower plots. Below 18-inches of depth the profiles are nearly identical. The conclusion can be made that the effects of diurnal temperature changes are minimal below a depth of 18 inches.

Correlations between surface temperature and strength data from the Clegg, FWD, LBR, and SSG tests results produced correlation coefficients (r²) of 0.83, 0.78, 0.67, and 0.42 respectively. These plots are presented in Appendix G. This behavior may be attributed to the properties of asphalt binder. During the eight week testing cycle surface temperatures increased from 85°F to 105°F during testing. The asphalt binder used in hot mix asphalt production is highly dependent on temperature. At temperatures between 160 to 300°F, asphalt behaves as a viscous liquid. Below 160°F, the behavior can be described as linearly viscoelastic (Somayaji, 2001). This means that RAP strength should decrease with temperature, however, an increase in RAP strength occurred. The temperatures experienced at the field site may not be high enough to cause a dramatic weakening of the RAP. This strengthening of the material may be a function of time as well as temperature. Asphalt is a polymer, which means it has a high coefficient of thermal expansion. The cyclic nature of the temperature, heating and cooling between daytime and nighttime, may be causing strain hardening in the material. As the asphalt is expanding, strain is being exerted on the surrounding material, causing it to both stiffen and strengthen. Another phenomenon that may be taking place is age hardening. When a sample of asphalt is heated and then allowed to cool, its molecules will be rearranged to form a gel-like structure, causing it to harden with time (Somayaji, 2001). This may be the reason that the strength of RAP is increasing with temperature as opposed to decreasing.

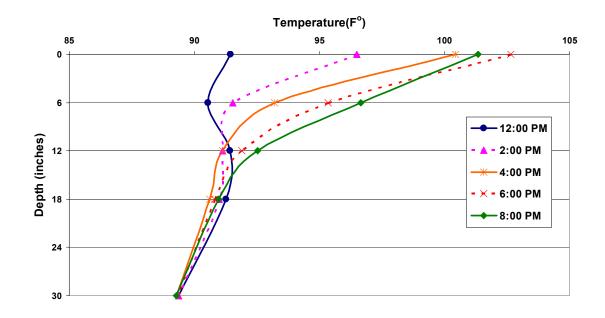


Figure 4.12 Bi-hourly Temperature Profiles for RAP (April 25–June 14, 2001)

4.11 Dry Rodded Unit Weight of RAP-Soil Mixtures

The relationship between unit weight and RAP-soil mixtures was initially evaluated through dry rodded unit weight tests. The objective of these tests was to characterize the effects of soil mixtures on the unit weight and use the results to aid in the selection of mixtures to be used for further investigation. This test was relatively quick and consumed less material as compared to standard compaction procedures. Tests were conducted starting with a sample of 100% RAP and incrementally adding the required amount of fine sand (i.e. material passing the #40 sieve size) to obtain the desired mix proportions. The results are shown in Figure 4.13. A maximum unit weight was achieved for a mixture of 80% RAP - 20% soil. The unit weight was improved by approximately 7 lb/ft³ or 7.5% from a 100 to an 80% RAP sample, and 3.4 lb/ft³ from a 60 to 80% RAP sample. The largest changes in unit weight occurred for samples containing 60 to 70 and 100 to 85 percent RAP, while minimal changes in unit weight occurred for mixtures containing 70 to 85 percent RAP. Based on these findings, RAP-soil mixtures containing 60, 80, and 100% RAP were selected for further investigation. A mixture yielding a maximum density was achieved for an 80% RAP mixture and the 60% RAP mixture was selected to investigate the behavior of RAP-soil mixtures over a broader range. Additional investigation of mixtures from 0 to 60% RAP were considered to be unnecessary as a secondary objective was to utilize the maximum amount of RAP. The sample preparation procedure for the fine sand also proved to be very time consuming and labor intensive.

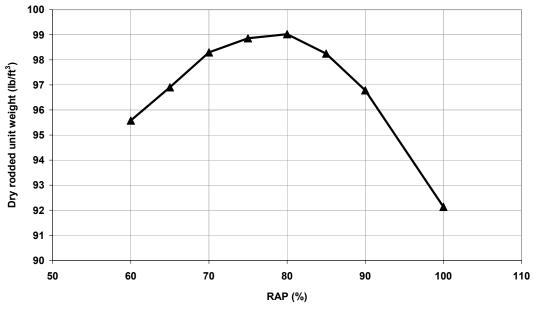


Figure 4.13 Dry rodded unit weight of RAP-soil mixtures

4.12 Physical Properties of RAP-soil Mixtures

The grain-size distributions of the RAP obtained from the field and the fine sand are shown in Figure 4.14. The RAP field material classified as an A-1-a and GW soil according to the American Association for State Highway and Transportation Officials (AASHTO) and Unified Soil Classification System (USCS) respectively. The fine sand classified as an A-2-6 soil according to AASHTO classification standards and as an SP-SC according to USCS. The gradation curve of the RAP field material falls within the ranges specified for graded aggregate (GA) base material (Figure 4.14) in section 204-2 of the *Standard Specifications for Road and Bridge Construction* (FDOT 2000).

The RAP-field material shows characteristics of a gap-graded soil, lacking particles in the 2.36 to 0.60 mm and 0.25 to .075 mm range. A set of RAP

gradation data of various investigations were collected and combined to show the variations in RAP gradation. The upper and lower ranges are presented in Figure 4.15. The upper range corresponds to the investigation conducted by Chesner et al. (1998) and the lower range was a combination of work by Sayed et al. (1993) and Taha et al. (1999). In general, the gradation curves presented by various investigations show the RAP to have characteristics of a gap-graded material.

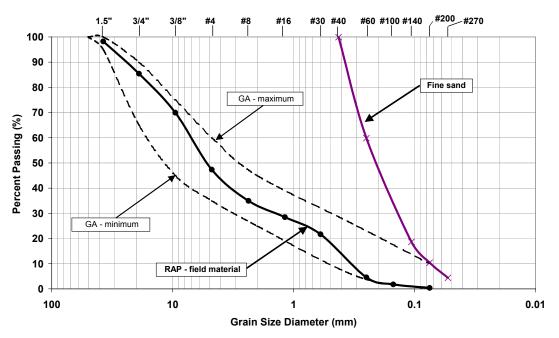


Figure 4.14 Grain-size distribution of RAP field material and fine sand (GA – graded aggregate base material)

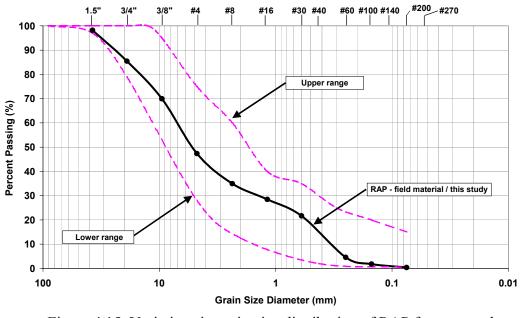


Figure 4.15 Variations in grain-size distribution of RAP from several investigations

Composite grain size distribution curves representing 60 and 80% RAP mixtures were developed from RAP field material and fine sand gradation results using a combination of analytical and graphical procedures. This was done because no sieve analyses were performed on mixtures containing actual RAP field material. The results are presented in Figure 4.16. Most of the 80% RAP mixture falls within the specified range except between the grain sizes from 0.35 to 3 mm that have a slightly higher percent passing. The 60% RAP mixture falls outside the range except for the larger (25 - 37.5 mm) and smaller (0.2 - 0.075 mm) particle sizes.

Figure 4.16 Composite gradation of RAP-soil mixtures developed using a combination of analytical and graphical procedure (GA – graded aggregate base material)

The RAP and RAP-soil mixtures used for laboratory testing consist of material passing the ³/₄ inch sieve (modified for testing) and do not represent field conditions. Their gradation curves are shown in Figure 4.17. The percent material passing the #40 sieve for the 60 and 80% RAP mixtures increased by 28 and 14% respectively relative to the 100% RAP. The addition of the fine sand increased the overall percent passing of the 100% RAP and changed the AASHTO classification from an A-1-a to an A-1-b for the RAP-soil mixtures. A summary of the gradation characteristics of RAP, RAP-soil mixtures, and fine sand based on dry sieve analysis are presented in Table 4.2.

Results pertaining to the specific gravity, asphalt content, and organic content are listed in Table 4.3. The RAP used in this study had a specific gravity of 2.19, which is slightly lower than results obtained from other studies.

Montemayor (1998) and Clary et al. (1997) reported specific gravity values of 2.27 and 2.38 respectively. The specific gravity of the mixtures increased with the addition of fine sand. The asphalt content of RAP falls within the range of most old pavements comprising of approximately 3 to 7 percent by weight (Chesner, et al. 1998). The fine sand had a dark grayish color and an organic content of 3.19%. The fine sand samples used for determining the organic content had a white color after completion of the organic content test.

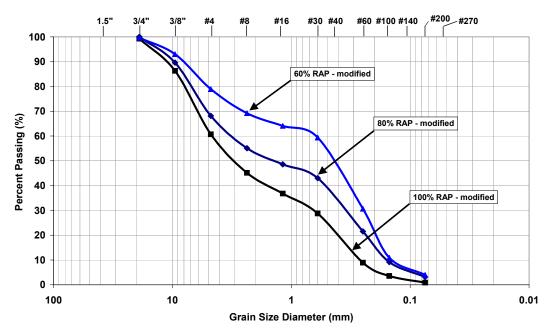


Figure 4.17 Grain-size distribution of the RAP and RAP-soil mixtures used for laboratory testing

	RAP	100% RAP	80% RAP	60% RAP	Fine sand ^c
					I IIIE Saliu
	field material ^a	modified ^b	modified ^b	modified ^b	
D ₁₀ (mm)	0.33	0.27	0.17	0.15	0.074
D ₃₀ (mm)	1.5	0.65	0.35	0.25	0.15
D ₆₀ (mm)	7	4.7	3.3	0.62	0.26
Cu	21	17	19	4.1	3.5
Cc	1.0	0.3	0.2	0.7	1.2
LL	-	-	-	-	39
PI	-	-	-	-	15
% passing	15.0	21.0	35.0	49.0	99.9
#40 sieve size	10.0	21.0	00.0	-10.0	55.5
% passing	0.4	0.9	3.1	4.0	10.4
#200 sieve size	0.4	0.9	5.1	4.0	10.4
USCS	GW	SP	SP	SP	SP-SC
classification	011	5	0	0	01-00
AASHTO	A-1-a	A-1-a	A-1-b	A-1-b	A-2-6
classification			A-1-0	A-1-0	A-2-0
^a : material having a 1.5 inch maximum size					
^b : material having a 3/4 inch maximum size					
^c : material passing the #40 sieve					
- : not determined					

Table 4.2 Summary of gradation parameters based on dry sieve analysis

	100% RAP	80% RAP	60% RAP	Fine sand ^c
	modified ^b	modified ^b	modified ^b	
Specific Gravity	2.19	2.25	2.37	2.64
Asphalt Content (%)	5.24	-	-	-
Organic Content (%)	-	-	-	3.19

Table 4.3 Specific gravity, asphalt content, and organic content results

^b : material having a 3/4 inch maximum size

 c : material passing the #40 sieve

- : not determined

4.13 Engineering Properties of RAP-Soil Mixtures

4.13.1 Moisture-Density

The moisture-density relationships of the RAP-soil mixtures obtained using modified Proctor compaction effort are presented in Figures 4.18 through 4.21. The 100% RAP material achieved a maximum density of 117.8 lb/ft³ at an optimum moisture content of 8.0%. Montemayor (1998) reported an average maximum density of 111.5 lb/ft³ at an approximate moisture content of 7.0%. He also reported that no well-defined peak was obtained from the moisture-density results, which agrees with the findings from this investigation. Chesner et al. (1998) reported compacted unit weights of RAP in the range of 100 to 125 lb/ft³ and maximum moisture contents in the range of 7 to 8%.

For the 80% RAP mixture, a maximum dry density of 121.7 lb/ft³ was achieved at an optimum water content of 6.0%. This corresponds to an increase of

approximately 4 lb/ft³ or 3.3%. The 60% RAP mixture yielded a maximum density of 121.2 lb/ft³ at an optimum water content of 7.8%. It can be observed that the compaction curves had a better defined peak as more fine sand was added to the RAP. The change in characteristics of the RAP-soil compaction curves is best observed in Figure 4.21.

The specific gravity results (Table 4.3) were used in an attempt to plot the zero air voids curve of the RAP and RAP-soil mixtures, however, the zero air voids curve of the RAP and 80% RAP mixture intersected their respective compaction curves. Only for the 60% RAP mixture was the zero air voids curve to the right of its corresponding compaction curve. As the percentage of RAP in the mixtures decreased, the zero air voids curve shifted to the right in relation to their corresponding compaction curves. The specific gravity of the RAP and RAP-soil mixtures were determined based on testing procedures for aggregates and soils. Air trapped in the asphalt and between the asphalt-aggregate interface could have increased the overall volume, resulting in lower specific gravity of bituminous materials be followed in order to obtain accurate results.

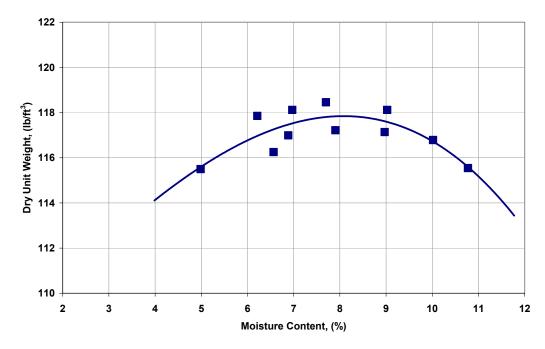


Figure 4.18. Moisture-Density curve of 100% RAP

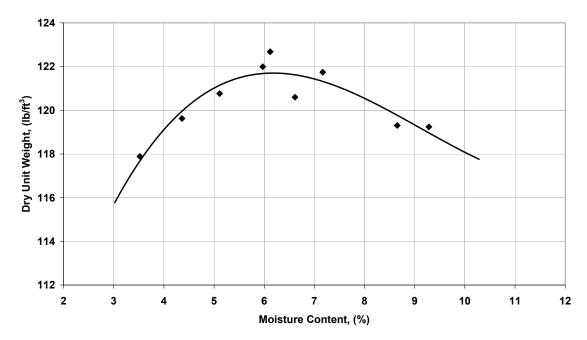


Figure 4.19. Moisture-Density curve of 80% RAP

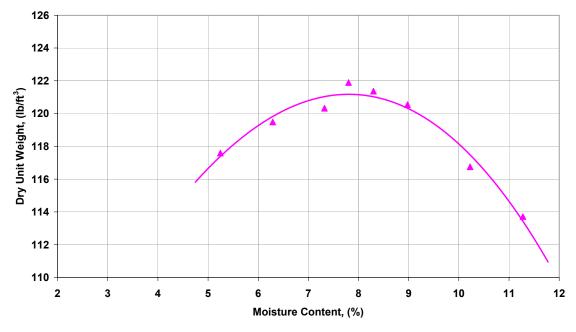


Figure 4.20. Moisture-Density curve of 60% RAP

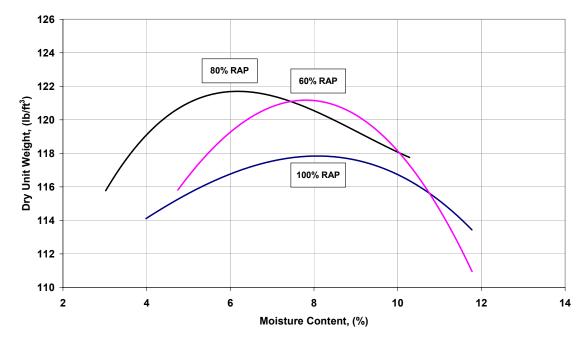


Figure 4.21. Moisture-Density curves of the RAP-soil mixtures

The maximum densities achieved for each mixture follow a similar trend as reported for the results obtained from the dry rodded unit weight tests (Figure 4.13). The 80% RAP mixture yielded the maximum density, followed by the 60% RAP mixture and the 100% RAP respectively.

The relationship between maximum dry unit weight and the percent material passing the #40 sieve size present in the RAP-soil mixtures is presented in Figure 4.22. Since the RAP-soil mixtures attained a maximum dry unit weight at 80% RAP, the optimal percent passing to achieve maximum density for the mixtures tested is about 35% for the #40 sieve size. An increase in the material passing the #40 sieve size increased the density until an optimal level was achieved; further increase caused a slight decrease in density. Changes in density were more pronounced below the optimal percent passing (i.e. 35%) the #40 sieve size.

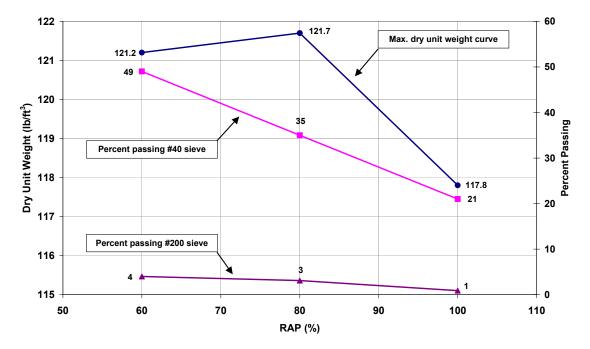


Figure 4.22. Dry unit weight - gradation relationship of RAP-soil mixtures

4.13.2 Permeability

The permeability test results for the RAP and RAP-soil mixtures are presented in Figure 4.23. Permeability of the RAP and RAP-soil mixtures remained relatively constant with changes in hydraulic gradient. The average permeability of the 100, 80, and 60% RAP mixtures were 2.0x10⁻⁴, 3.1x10⁻⁵, and 1.8x10⁻⁶ cm/s respectively. Figure 4.24 shows the average permeability in relation to the RAP percentage in the mixtures. For the range examined, the permeability decreased approximately by one order of magnitude for each increment of added fine sand.

Casagrande and Fadum (1940) report a permeability of 1×10^{-4} cm/s as an approximate boundary between soils providing good and poor drainage under low hydraulic gradients. Based on this, RAP is classified as a material providing good drainage while the RAP-soil mixtures classify as a poorly drained soil. The amount of fines (material passing the #200 sieve) present affects the drainage characteristics of a material. Added fines fill the intergranular voids; reducing the effective pore size, thereby increasing friction and restricting flow through a material. The RAP and RAP-soil mixtures had between 1 to 4% material passing the #200 sieve as determined by dry sieve analysis. According to Barksdale (1991) a base material is not free draining if the amount of material passing the #200 sieve is more than about 2%. Investigation by Blanco et al. (2003) on the laboratory and in-situ permeability of base materials in Missouri revealed that the average permeability of the base materials were 1000 times lower than typically required for good drainage. The laboratory permeabilities ranged from $9x10^{-2}$ to $3x10^{-7}$ cm/s and the in-situ permeabilities ranged from $2x10^{-3}$ to $4x10^{-5}$ cm/s. Average values for the percent fines (material passing the #200 sieve) determined by the dry

sieve method and by the wet sieve method were found to be 4 and 15 percent respectively (Blanco et al. 2003).

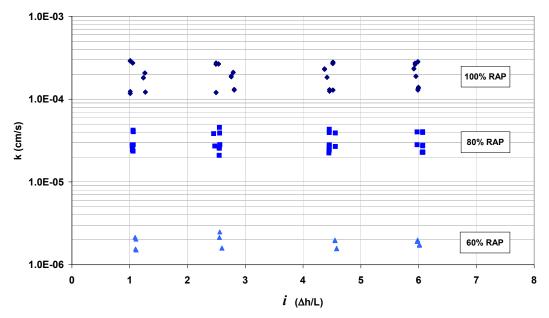


Figure 4.23 Permeability vs. hydraulic gradient of RAP and RAP-soil mixtures

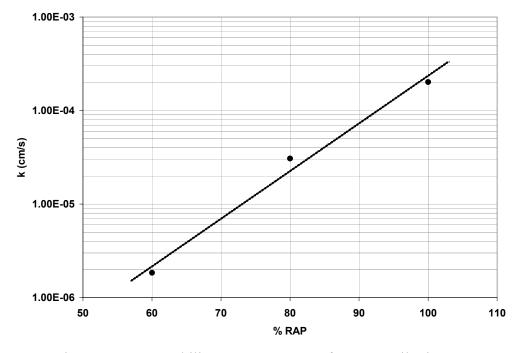


Figure 4.24 Permeability vs. percent RAP for RAP-soil mixtures

4.13.3 Limerock Bearing Ratio

Density is usually an indicator of the strength and stability of granular soil material. Densely compacted materials demonstrate higher strengths with less deformation than the same loosely compacted materials. The strength of the RAP-soil mixtures as measured by the LBR test are presented in Figures 4.25 and 4.26. LBR results of samples tested as base material are shown in Figure 4.25. All the samples tested were below the minimum LBR requirement of 100 for base material. The relative compaction of all base samples for LBR testing were close to 100 percent. The average density, LBR, and relative compaction are summarized in Table 4.4. The addition of fine sand resulted in an increase in density, but the most significant improvement was obtained in the LBR. The

addition of 20% fine sand yielded an increase in density of 3.7% while the LBR improved by 111% relative to 100% RAP. Additions of 40% fine sand resulted in a 1.8% increase in density and a 54% improvement in LBR relative to 100% RAP.

To investigate whether the increases were due to either density or grain size distribution, additional tests were conducted on three 100% RAP samples compacted at twice the modified Proctor compaction effort (double-modified Proctor). The samples compacted using double-modified Proctor energy displayed densities comparable to the 60% RAP samples, however, the LBR increased only 17%. From these additional tests it can be concluded that the major improvements in LBR are due to the added fine sand, and not because of slight increases in density. This demonstrates that the LBR can be improved more significantly by the addition of fine sand (i.e. material passing the #40 sieve size) rather than by increases in density due to doubling the compaction effort.

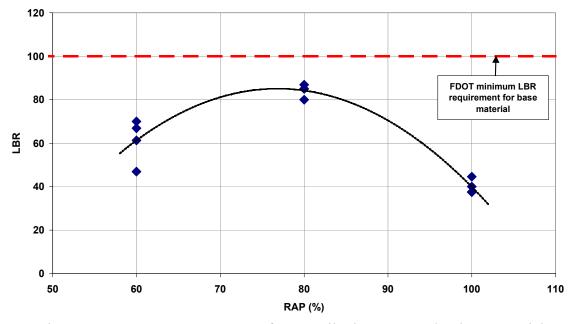


Figure 4.25 LBR vs. percent RAP of RAP-soil mixtures tested as base material

Table 4.4 Density, LBR, and relative compaction of RAP-soil mixtures tested as base material

	Compactive Effort	Moisture o	content (%)		Density	(lb/ft ³)		LB	BR	R.C.
	(ft-lb/ft ³)	ave.	stdv.	ave.	stdv.	% improvement	ave.	stdv.	% improvement	(%)
100% RAP	56,000	7.8	0.43	117.6	0.75	-	39.9	3.35	-	99.8
80% RAP	56,000	6	0.08	121.9	0.77	3.7	84.2	2.96	111	100.2
60% RAP	56,000	8	0.17	119.7	1.49	1.8	61.3	10.24	54	98.8
100% RAP	112,000	8	0.18	120.0	0.32	2.0	46.7	6.06	17	na

ave. : average

stdv. : standard deviation

- : % improvement was determined relative to the 100% RAP results R.C. : Relative Compaction

na : not available

LBR results of RAP and RAP-soil mixtures tested as subgrade material are shown in Figure 4.26. All the samples were at or above the minimum LBR requirement of 40 for subgrade material. The relative compaction of all subgrade samples for LBR testing was close to 100 percent. The average density, LBR, and relative compaction are summarized in Table 4.5. The behavior of the RAP and RAP-soil mixtures tested as subgrade materials were similar to the base material and a similar trend was observed in the improvement of density and LBR. The addition of 20% fine sand increased the density by 3.4% and improved the LBR by 99% relative to 100% RAP. Additions of 40% fine sand yielded a 1.2% increase in density and a 36% improvement in LBR relative to 100% RAP. The addition of minus #40 sieve size particles (i.e. fine sand) resulted in significant increases in LBR, similar to increases of the RAP and RAP-soil mixtures tested as base material.

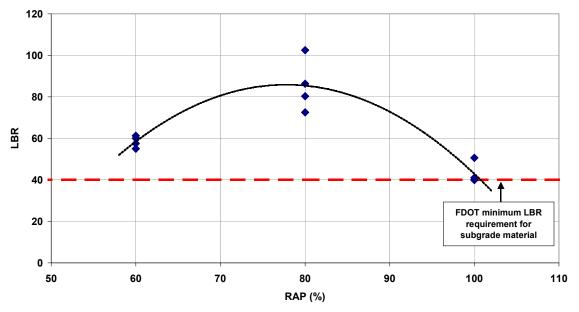


Figure 4.26 LBR vs. percent RAP of RAP-soil mixtures tested as subgrade material

Table 4.5 Density, LBR, and relative compaction of RAP-soil mixtures tested as subgrade material

	Moisture	content (%)		Density (lb/ft ³)		LBR			R.C.
	ave.	stdv.	ave.	stdv.	% improvement	ave.	stdv.	% improvement	(%)
100% RAP	8	0.33	117.7	0.26	-	42.9	5.17	-	99.9
80% RAP	6.4	0.7	121.7	1.87	3.4	85.4	12.72	99	100.0
60% RAP	8	0.31	119.1	2.02	1.2	58.4	2.77	36	98.3

ave. : average

stdv. : standard deviation

: % improvement was determined relative to the 100% RAP results

R.C. : Relative Compaction

4.13.4 Static Triaxial Compression

The strength of the RAP and RAP-soil mixtures was also measured by triaxial compression tests. Stress-strain curves were developed for each sample to determine the initial elastic modulus, secant elastic modulus, and maximum stress at failure. The initial modulus consists of the initial slope of the stress-strain curve and the secant modulus was determined from the slope of a straight line from the origin to 50% of the maximum stress level. The stress-strain characteristics of the RAP and RAP-soil mixtures are presented in Figures 4.27 and 4.28.

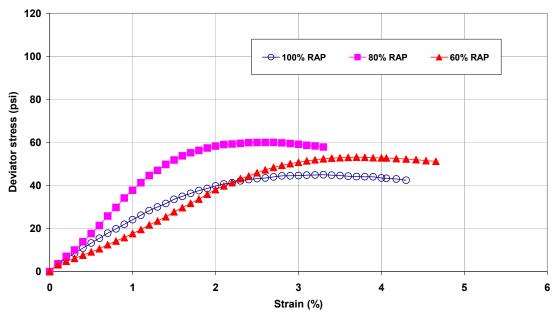


Figure 4.27 Stress-strain characteristics of RAP-soil mixtures at effective confining pressures of 5 psi

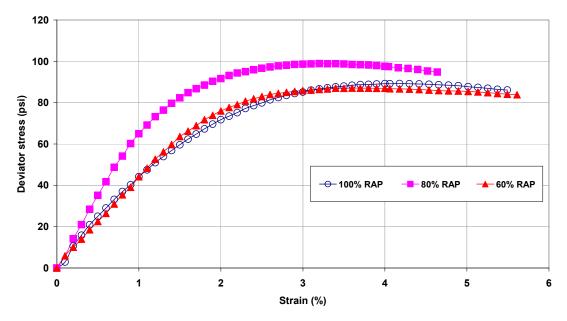


Figure 4.28 Stress-strain characteristics of RAP-soil mixtures at effective confining pressures of 15 psi

The maximum stress at failure was the highest for the 80% RAP mixture, and was 30% and 9.2% higher at respective confining pressures of 5 and 15 psi relative to 100% RAP. For the 60% RAP mixture, the maximum stress at failure was 16% higher than the 100% RAP at the lower confining pressure (Figure 4.27). At the higher confining pressure the changes were minimal (Figure 4.28). In general, the changes in maximum stress at failure were greater at lower confining pressures.

The 80% RAP mixture yielded the highest secant moduli, and were approximately 57% higher relative to 100% RAP at confining pressures of 5 and 15 psi. The secant modulus of 60% RAP was lower than 100% RAP at the lower confining pressure. At the higher confining pressure, the secant elastic modulus obtained for the 60% RAP mixture yielded comparable results to the 100% RAP sample. The initial and secant modulus of all samples tested were generally very similar. The results for 100% RAP agree with values reported by Doig (2000). Bennert et al. (2000) reported a secant modulus of 3384 psi for RAP at a confining pressure of 15 psi. A plot of the secant modulus of elasticity versus percent RAP is presented in Figure 4.29. The modulus of soils is a function of stress level and tends to increase with an increase in confining pressure (σ_3). This behavior was also evident for the RAP and RAP-soil mixtures. The triaxial compression results demonstrate that the 80% RAP - 20% soil mixture has a higher stiffness than the 100 and 60% RAP, which support the findings from LBR testing. The 80% RAP yielded the highest LBR values, thus demonstrating higher strength and stiffness.

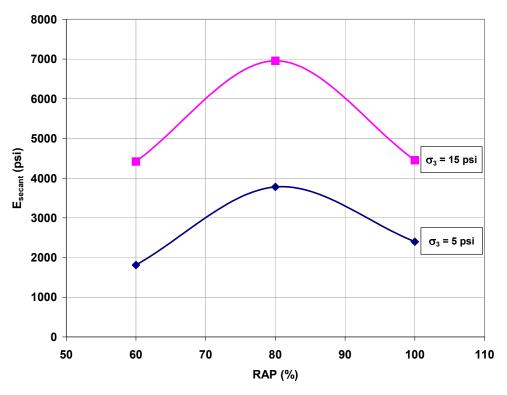


Figure 4.29 Secant modulus of elasticity vs. percent RAP at effective confining pressures of 5 and 15 psi

The maximum deviator stresses at failure were used to develop Mohr-Coulomb failure envelopes (Appendix I) in order to determine the cohesion intercept and friction angle of the RAP and RAP-soil mixtures. The highest friction angle obtained was for 100% RAP, and decreased as the percentage of fine sand increased. The addition of fine sand may have reduced the grain-to-grain contact causing the larger particles to float within the soil matrix. This would have created planes in which the particles can slip and dislocate when a load is applied, resulting in a reduction of the friction angle. The 80 and 60% RAP mixtures demonstrated higher cohesion values than the 100% RAP. The cohesion obtained for RAP may be attributed to the presence of asphalt binder that would cause the particles to adhere to each other when forced together. The increase in cohesion as the percentage of fine sand increased may be due to capillary pressures caused by the attraction of the pore water menisci on the fine sand particles, resulting in an apparent cohesion. This behavior is described by Terzaghi and Peck (1948). Changes in cohesion were more pronounced from 100 to 80% RAP. The results are presented in Figure 4.30. Doig (2000) reported a friction angle of 44 degrees and a cohesion of 2.3 psi for Hammermill processed RAP tested at room temperature for zero storage days. Investigation by Bennert et al. (2000) also yielded a friction angle of 44 degrees and a cohesion of 2.3 psi, and Garg and Thompson (1996) reported a friction angle of 45 degrees and a cohesion of 19 psi for RAP. Friction angles for limerock and cemented coquina of 44 and 41 degrees respectively were reported by Bosso (1995). A summary of the triaxial results is presented in Table 4.6.

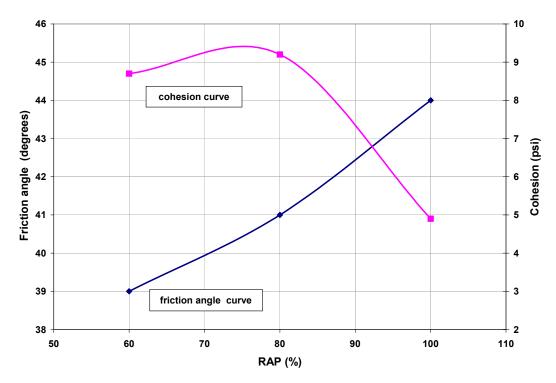


Figure 4.30 Cohesion and friction angle vs. percent RAP

Table 4.6 Summary of triaxial compression results of RAP-soil mixtures

	100% RAP		80%	RAP	60% RAP	
	σ_3 = 5 psi	σ_3 = 15 psi	σ_3 = 5 psi	σ_3 = 15 psi	σ_3 = 5 psi	σ_3 = 15 psi
σ_1 @ failure, (psi)	50.0	104.3	65.0	113.9	58.2	102.1
E _{initial} , (psi)	2357	4400	3780	6957	1470	4245
E _{secant} @ 50% failure, (psi)	2400	4450	3780	6957	1810	4420
Friction angle, (degrees)	44		41		39	
Cohesion, (psi)	4.9		9.2		8.7	

 σ_1 : deviator stress

 $\sigma_3: \text{ confining pressure}$

4.13.5 Resilient Modulus

The resilient modulus results of the RAP and RAP-soil mixtures tested as base and subgrade materials are presented in a logarithmic format in Figures 4.31 and 4.32 respectively. The results show that the 100% RAP specimens yielded the highest resilient modulus for the ranges of bulk stresses (θ) tested, followed by the 80 and 60% RAP mixtures. This behavior coincides with findings from Clary et al. (1997), Maher et al. (1997), and Bennert et al. (2000), where the resilient modulus increased as the percentage of RAP in the mixture increased. The resilient modulus also increased with an increase in bulk stress, which is typical of granular soils. The samples tested as base material showed very consistent results, with regression coefficients (r^2) ranging from 0.85 to 0.98. However, the results of samples tested as subgrade material were less consistent, with regression coefficients as low as 0.47 and 0.50 for the 80 and 100% RAP samples. The 60% RAP sample had a regression coefficient of 0.79, but the results were obtained by testing only one specimen due to material shortage. All the remaining results were obtained by performing 2 tests for each RAP and RAP-soil mixture tested as base and subgrade material. The regression constants, k_1 and k_2 , derived from the test results fall within the ranges of typical values for base materials specified in the AASHTO Guide for Design of Pavement Structures (1993).

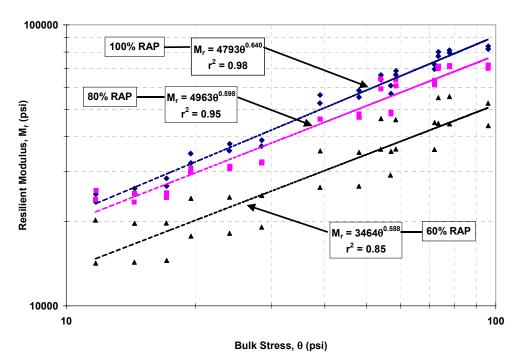


Figure 4.31 Resilient modulus results for RAP and RAP-soil mixtures tested as base material, $M_r = k_1 \theta^{k_2}$ (psi)

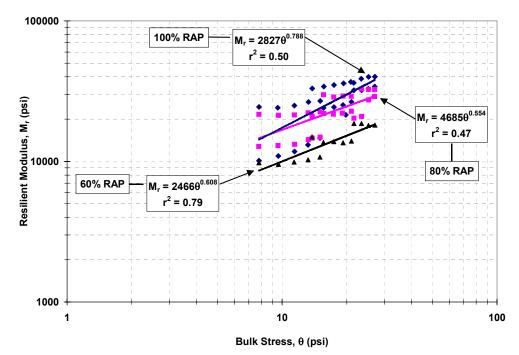


Figure 4.32 Resilient modulus results for RAP and RAP-soil mixtures tested as subgrade material, $M_r = k_1 \theta^{k_2}$ (psi)

The investigations by Clary et al. (1997), Maher et al. (1997), and Bennert et al. (2000) were conducted on mixtures of RAP and materials commonly used for base and subbase applications. RAP yielded higher resilient moduli than the base and subbase course materials used in these investigations, and the resilient modulus of the RAP mixtures increased as the RAP percentage increased. Ping and Ge (1996) reported resilient modulus of limerock for displacements measured over the entire specimen and at the middle one-third of the specimen. Resilient moduli of limerock and coquina were reported by McClellan et al. (2001). To provide a basis for comparison, resilient moduli tests performed on limerock samples from the field site were compared to the RAP and RAP-soil mixtures results. These test results produced stiffness values very similar to RAP and the regression coefficients for the log-log data were all above 0.92. Comparisons of all the data at bulk stresses of 21 and 50 psi are presented in Table 4.7. It should be noted that the

test procedures followed in each study differ, and the results were presented for comparisons of their behavior. The test procedures vary slightly from each other in loading sequences, applied confining pressures, amount of load repetitions, and location of displacement measuring devices (LVDT's). LTTP Protocol P46 is the latest test procedure implemented to ensure repeatable, reliable, and quality resilient modulus results.

Reference	Application	Procedure	Material	k ₁	k ₂	r²	M_r at θ = 21 psi	M _r at θ = 50 psi
							(psi)	(psi)
This study - RAP	Base	LTTP	100% RAP	4793	0.640	0.980	33,583	58,486
Mixture with		Protocol P46	80% RAP	4963	0.598	0.950	30,648	51,488
processed organic soil			60% RAP	3464	0.588	0.850	20,747	34,549
This study - RAP	Subgrade	LTTP	100% RAP	2827	0.788	0.500	31,134	*
Mixture with		Protocol P46	80% RAP	4685	0.554	0.470	25,306	*
processed organic soil			60% RAP	2466	0.608	0.790	15,700	*
This study - Limerock	Base	LTTP	LIMEROCK ^b	2258	0.781	0.977	24,302	47835
		Protocol P46	LIMEROCK ^c	5544	0.574	0.927	31,215	51272
Clary et al. (1997) -	Base	AASHTO	100% RAP	6180	0.505	0.930	28,755	44,562
Mixture with dense		T 294 - 94	50% RAP	3604	0.597	0.970	22,190	37,245
graded crushed			30% RAP	2870	0.647	0.970	20,576	36,067
stone			10% RAP	2252	0.654	0.970	16,493	29,087
			0% RAP	2410	0.661	0.880	18,030	31,992
Clary et al. (1997) -	Subbase	AASHTO	100% RAP	6180	0.505	0.930	28,755	44,562
Mixture with gravel		T 294 - 94	50% RAP	3610	0.586	0.960	21,495	35,736
			30% RAP	2976	0.625	0.960	19,954	34,315
			10% RAP	2821	0.611	0.930	18,125	30,795
			0% RAP	2610	0.631	0.900	17,822	30,810
Maher et al. (1997)	Base	AASHTO	RAP	-	-	-	37,745	52,567
		T 294 - 92	DGABC ^a	-	-	-	20,750	31,513
Bennert et al. (2000) -	Base	AASHTO	100% RAP	-	-	-	38,173	52,342
Mixture with		TP46 - 94	75% RAP	-	-	-	27,397	40,740
DGABC ^a			50% RAP	-	-	-	25,830	40,537
			25% RAP	-	-	-	23,075	33,967
			0% RAP	-	-	-	16,838	26,033
Ping and Ge (1996)	Base	AASHTO	LIMEROCK	3366	0.662	0.871	25,259	44,857
		T 292 -91	LIMEROCK ^c	4665	0.635	0.806	32,245	55,937
McClellan et al. (2001)	Base	AASHTO	LIMEROCK	5925	0.592	0.986	35,884	59,949
		T 294 - 92	COQUINA	7310	0.596	0.990	44,927	75,370

Table 4.7 Comparison of resilient modulus results, $M_r = k_1 \theta^{k_2}$ (psi)

* : Bulk stresses (θ) during laboratory tests range from 7 - 27 psi for subgrade material

- : not available

^a : Dense Graded Aggregate Base Coarse

^b: mean values of k_1 , k_2 , and r^2 were calculated from samples tested in the optimum moisture content range (10.2 to 12.6%) for deformation readings measured over the entire length of the specimen

c : mean values of k₁, k₂, and r² were calculated from samples tested in the optimum moisture content range (10.2 to 12.6%) for deformation readings measured at the middle third of the specimen

The equation specified by AASHTO (1993) to estimate the layer coefficient (a₂) of base materials was used to determine a₂-values of the RAP, RAP-soil mixtures and the limerock from the field site. The layer coefficient is a function of the resilient modulus and increases with an increase in resilient modulus. The a₂-values, calculated based on a bulk stress (θ) of 20 psi, are presented in Table 4.8. They represent the strength immediately after placement and exclude any long-term strength gains that the materials may display. Typical layer coefficients for Florida aggregates specified by the FDOT are listed in Table 4.9. These typical values were developed through the comprehensive laboratory and field-testing program described in Chapter 2.1 of the FDOT Materials Manual (2000), which account for long-term strength gain.

As was the case with the resilient moduli, the 100% RAP had the highest layer coefficient, followed by the 80 and 60% RAP. The difference in layer coefficient between the 100 and 80% RAP is quite small, and the values compare well with the layer coefficient specified by the FDOT for graded aggregate base material. Results from the field studies in both Phase I and II of this investigation indicate that RAP undergoes a strength gain, but it has the advantage of not being adversely affected by moisture. Additional work needs to be performed to evaluate this long-term strength gain.

Based on the layer coefficients and resilient moduli values, which were determined from small strains, RAP and RAP-soil mixtures warrant additional evaluations. These evaluations should be on samples placed in a controlled test pit subjected to both small and large strains. Testing should be conducted according to the procedures outlined in the FDOT Materials Manual (2000).

Material	k ₁	k ₂	M_r at θ = 20 psi	a ₂ *	LBR		
			(psi)				
100% RAP	4793	0.640	32551	0.15	40		
80% RAP	4963	0.598	29767	0.14	84		
60% RAP	3464	0.588	20160	0.09	61		
Limerock	2258	0.781	23394	0.11	100		
: a ₂ = 0.249(log ₁₀ M _r) - 0.977 (AASHTO 1993)							

Table 4.8 Layer coefficient (a₂) of RAP, RAP-soil mixtures and Limerock for base application (excludes long-term strength gain)

Table 4.9 Layer coefficient (a₂) of typical aggregates used in Florida for base application (includes long-term strength gain)

Material	Application	Minimum	a ₂	Specification
		LBR		Section
Limerock ^a	Base	100	0.18	200
Cemented Coquina ^a	Base	100	0.18	250
Graded Aggregate ^a	Base	100	0.15	204
Sand Clay ^b	Base	75	0.12	240

^a: general use

^b : limited use

The 100% RAP yielded the highest resilient modulus, however, the resilient modulus results differ from the LBR and triaxial compression results in which the 100% RAP produced a lower strength and stiffness as compared to the 60 and especially the 80% RAP mixture. Bennert et al. (2000) suggested that this type of behavior of RAP may be attributed to the resilient modulus test procedure itself. For the load sequences used in the test procedure, the average deformation of the last five load cycles is used from the total 100 load cycles applied. The strains that might develop during the first 95 load cycles are not accounted for. From the

permanent deformation tests conducted on RAP, recycled concrete aggregate (RCA), and a dense-graded aggregate coarse (DGABC) by the Bennert et al. (2000), RAP obtained the highest permanent strain. The respective permanent strains of the RCA and DGABC were 6.9 and 12.0% the strain of RAP. Recall that the resilient modulus is defined as the deviator stress divided by the recoverable (resilient) strain. During the load sequences, RAP might experience larger plastic deformations and smaller resilient strains, while conventional material might undergo smaller plastic deformations with larger resilient strains. This would result in higher resilient modulus for RAP and lower resilient modulus for conventional materials. Despite the higher resilient modulus obtained for RAP, it is likely that based on the findings by Bennert et al. (2000), RAP would experience larger plastic deformations, showing potential for rutting and possible creep behavior.

4.13.6 Compaction Characteristics

A summary of the compaction characteristics of all the tests is presented in Appendix L. An effort was made to maintain the compactive effort as close as possible to modified Proctor energy (56,000 ft-lb/ft³) and to perform compaction at the optimum moisture content for each RAP-soil mixture. The number of layers and the number of blows per layer for the static triaxial compression, resilient modulus, and permeability tests were modified to achieve a compactive effort as close as possible to 56,000 ft-lb/ft³.

The relative compaction of the LBR RAP-soil mixtures was very consistent with values close to 100 percent. The decrease in sample size for the static triaxial compression, resilient modulus, and permeability tests, resulted in variations in the relative compaction values of the RAP-soil mixtures.

4.14 Preliminary Creep Investigation Results

The load-deflection versus time data was reduced to the plot shown in Figure 4.33. The data indicate all three materials experienced a rapid initial deflection increase followed by a leveling trend that was either horizontal or very close to horizontal. When comparing the 100% RAP to the 80/20 RAP-soil mixture, it is definite that the 80/20 RAP-Soil mix produced lower deflections. Both the RAP and RAP-soil mixture samples demonstrated a similar characteristic, in that they each displayed continuous deformation as shown in Figure 4.33. The A-3 soil, which was used as the control, stopped showing significant deformations after approximately 4000 minutes with an application of 33.5psi and after approximately 1000 minutes with an application of 67 psi. It should be noted that the A-3 soil sample exhibited a bearing capacity failure during the first minute of the 134 psi loading and it is therefore not possible to analyze the increments of 134 psi and 268 psi. When comparing the deformation patterns of the RAP samples to the A-3 soil, it is evident that the RAP samples exhibit much smaller initial deformations with continuous deformations. On the other hand, the A-3 soil exhibits much larger initial deformations, which quickly level off and nearly stop deforming.

To normalize the vertical axis of Figure 4.33, it was converted from deflection to an axial strain. This is a result of making assumptions in order to calculate the strain of each sample. This experiment was based on the LBR methodology where the mold diameter was 6 inches and the piston diameter was 1.95 inches. As a result, the strains are not one-dimensional. and strain cannot be calculated with exact certainty. In order to calculate a strain, it was assumed that the original height (h_0) for the strain ($\epsilon = \Delta h/h_0$) was the height of the sample located directly underneath the piston. It was also assumed that all of the deformation (Δh) occurred in the column of soil located directly beneath the 1.95-inch piston.

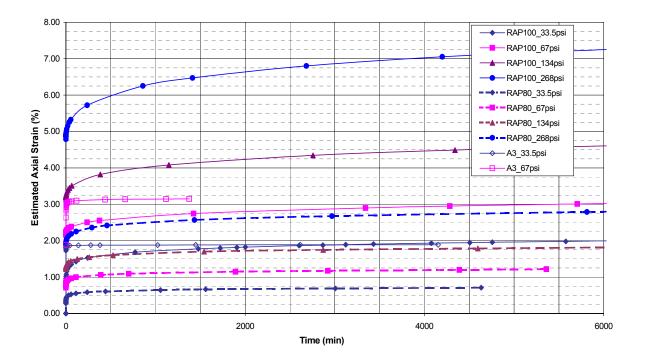


Figure 4.33 Results from creep testing of 100% RAP, 80/20 RAP-Soil Mixes, and 100% A-3 Soils.

The long-term characteristics were evaluated by calculating the slope of each curve between 1000 minutes and 4000 minutes, and the results are exhibited in Table 4.10. The slopes of the curves in terms of strain versus time, or percent per minute, are presented in the table. Since the A-3 sample failed during the application of 134 psi, no data exists for 134 psi or 268 psi for this sample.

Stress Level	Soil Tested	Slope of Curve		
(psi)		(%/min)		
	100%RAP	7.2E-05		
33.5	80%RAP	2.1E-05		
	A-3 Soil	2.2E-06		
	100%RAP	9.0E-05		
67	80%RAP	1.4E-05		
	A-3 Soil	2.0E-06		
	100%RAP	1.4E-04		
134	80%RAP	4.2E-05		
	A-3 Soil	N/A		
	100%RAP	2.4E-04		
268	80%RAP	7.1E-05		
	A-3 Soil	N/A		

Table 4.10Slopes of Estimated Axial Strain versus Time(between 1000 and 4000 minutes)

N/A - no data available because these stresses exceeded the bearing capacity of the soil.

As expected, as the applied pressures increased, the rate at which the samples deformed also increased. Therefore, increases in pressure resulted in larger amounts of creep.

The results were also analyzed by isolating each of the pressures. The strain rate decreases significantly from the 100% RAP to the 80% RAP to the A-3 soil, implying that less RAP results in lower creep values. For each of the loading applications, there is at least an estimated half an order of magnitude difference in the slopes between the 100% RAP and 80% RAP samples. There is approximately one order of magnitude difference between the 80% RAP and A-3 soil samples in each case, which was possible to analyze.

These results show that there is a decrease in the strain rates when comparing 100% RAP to 80% RAP. However, the rate at which the 80% RAP

strains is still well above the values for the A-3 control soil. The performance of RAP, in terms of creep, is significantly improved by mixing with soil. To estimate a total settlement of a typical 20-foot high MSE wall with a life of 20 years, the sum of the strains for various time intervals were calculated, and then summed. The time intervals began with 1000-minute increments and increased as the curve approached zero. The settlement associated with each time interval was calculated by multiplying the strain in percent by the total height of the MSE wall, which was assumed to be 20 feet.

By performing these calculations, the total creep movement for a 20-foot high MSE wall with a 20-year design life and constructed of 100% RAP is estimated to be 0.275 feet (3.3 inches). Performing the same analysis with 80% RAP yields a total secondary settlement of approximately 0.105 feet (1.25 inches). By decreasing the amount of RAP by 20%, the total secondary settlement was reduced by more than 60%.

Although the results for the 80/20 RAP-soil indicate that it does not perform as well as the A-3 control soil, there is a possibility that other mixtures might. This preliminary testing indicates that RAP and RAP-soil mixtures need to be further tested for their long-term behavior.

4.15 Environmental Results and Discussion

4.15.1 Field Study

Using the surface water and leachate water sampled from the field site over a 10-month period, Silver, Cadmium, Chromium, Lead, and Selenium concentrations were determined versus time. Typically, eight metals are analyzed to determine their "*leachability*" into the environment; this includes the five above plus, Mercury, Arsenic and Barium. Mercury was not evaluated as it is a fairly volatile substance and most probably volatilized prior to the milling operation for RAP. Arsenic and Barium have historically not been present in the by-products from the asphalt industry and were not investigated by other researchers who evaluated RAP (Townsend and Brantley, 1998). Therefore, neither of these metals were included in this study.

The format used to present the results is consistent throughout this section. Both tables and figures are used for each element. The first column of the data tables shows the time-of-exposure, (i.e. the number of days after construction when aqueous samples were collected). The figures are semi-log plots that show the EPA Standards and the lowest detectable concentration for each of the five metals. The lowest detectable concentration was determined based on the range of concentrations expected for each metal. Statistical data from 3 standard tests were used to develop an expected range within which the AAS yields reliable data. Data above and below this range are not near a regression line developed based on the standards. During this research, only values below the detection limit occurred. These concentrations are shown so readers can visualize the total number of samples tested, along with those below the AAS detection limit.

4.15.1.1 Sampling Protocol

The sampling protocol for the surface water collection was slightly different than the protocol for the leachate collection. Following severe rainfall events, surface water samples were collected in two separate collection tanks (Figure 3.11). These samples were collected, analyzed and are reported in two separate columns within these tables. On many sampling days, there was insufficient quantity in the second collection tank for analyses. During sample collection, it was noted that the volume of surface runoff from the RAP collection system was larger than the volume produced by the limerock control site. This is probably attributed to more surface runoff in RAP than limerock.

As expected, the leachate sample volumes were lower than the surface water volumes, therefore, no single rainfall event, during the 10-months, generated enough leachate to require the 2^{nd} tank shown in Figure 3.11 for collection. Subsequently, only one column of the data table is presented for the leachate results.

Data shown in the tables represent the mean value of each analysis, which includes three replicates with less than 5% variation. Since all standard deviations were much less than the 5 % limit they were not displayed in the following tables. Data was also presented in graphical format, in Figures 4.34 - 4.38, to determine if there were any trends in the concentration changes over time during the study period. US EPA standards are also shown in each figure for comparison purposes. In many instances the data from the testing was below the detectable limit of the testing equipment for the particular chemical being analyzed. This value is also shown in the tables and on the plots.

4.15.1.2 Silver (Ag) Concentration in Runoff and Leachate Samples

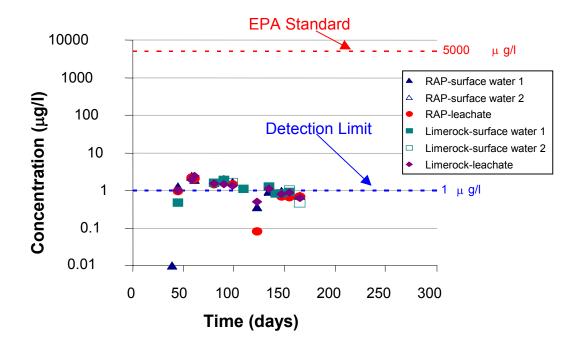
Appendix Table J.1 shows the concentration of silver in surface runoff and leachate samples collected from both the RAP and Limerock collection systems. There were 14 sampling periods over 165 days that produced 50 adequate samples out of a possible 84. There were insufficient quantities retrieved for testing in the remaining 34 samples. Three tests were conducted on each of the 50 adequate samples and 25 sets of three, or 50 percent, produced results that were below the detectable limit of 1 μ g/l for silver. The three tests conducted on each of the 27 adequate RAP samples produced 15 sets of three, or 56 percent, below the detectable limit. There were 23 adequate samples collected from the Limerock collection system, of which 10 sets of three, or 44 percent, were below the detectable limit.

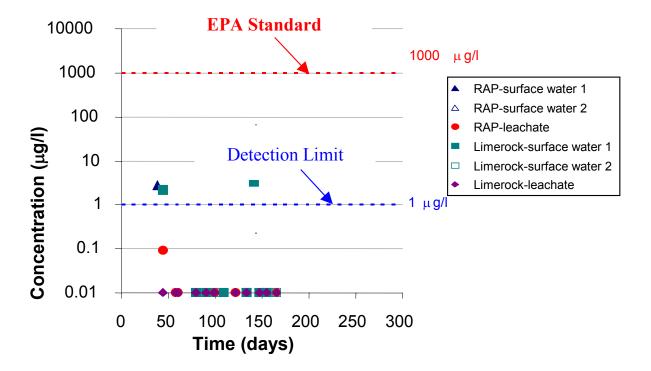
The initial surface runoff samples from RAP site were collected after 38 days of exposure, and displayed a concentration below detection limit. The next sample was collected one week later with a concentration slightly above the detection limit. Detectable concentrations of silver from RAP surface runoff samples were found for those collected within 100 days of exposure. After 100 days of exposure, surface runoff samples from the RAP site showed no detectable concentrations of silver in surface runoff samples from the RAP site showed no detectable silver in surface runoff samples from the RAP site were far below the EPA standards of 5,000 μ g/l and just barely above the detectable limit. No change in concentration over time was observed during the sampling period. The results indicated that, with regard to silver, RAP possessed no threat to the environment through surface runoff.

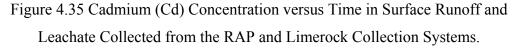
The first detectable Ag concentration in the leachate from RAP was not found until 58 days of exposure, while the last detectable concentration was found in the samples collected after 134 days. While detectable, these samples produced very low Ag concentrations, which were slightly above detection limit and similar to the range of surface runoff samples. The Ag concentrations also decreased over time. After 140 days of exposure, leachate from the RAP site showed no detectable concentrations of silver. (Appendix Table J.1 and Figure 4.34). Overall, concentrations of detectable silver in leachate samples from RAP site were far below the EPA standards. The results indicated that RAP does not pose a threat to the environment from silver contamination.

Findings from the limerock control site were quite similar to those found from RAP, (Appendix Table J.1 and Figure 4.34). None of the silver concentrations were near the EPA Standard of 5000 µg/l and were just barely above detectable limits, as shown in Figure 4.34. The results indicated that, with regard to silver, Limerock poses no threat to the environment through either surface runoff or leachate.

Limerock is a naturally occurring material, used in a large amount of highway construction. Since the findings for RAP are similar to those for Limerock, environmentally it can be concluded that, concerning silver, RAP is acceptable.




Figure 4.34. Silver (Ag) Concentration versus Time in Surface Runoff and Leachate Collected from the RAP and Limerock Collection Systems.


4.15.1.3 Cadmium (Cd) Concentrations in Runoff and Leachate Samples

Appendix Table J.2 and Figure 4.35 show the concentration of cadmium in surface runoff and leachate samples collected from both the RAP and Limerock collection systems. There were 14 sampling periods over 165 days, yielding data for 50 adequate samples out of a possible 84. There were insufficient quantities retrieved for testing in the remaining 34 samples. Three tests were conducted on each of the 50 samples and 47, or 94 percent, produced results below the detectable limit of 1 μ g/l for cadmium. The three tests conducted on each of the 27 adequate RAP samples produced 26, or 91 percent, below the detectable limit. There were 23 adequate samples collected from the Limerock collection system, of which 21, or 91 percent, were below the detectable limit.

Appendix Table J.2 shows the concentration of cadmium in surface runoff and leachate samples collected on site. The first surface runoff samples from the RAP site were collected after 38 days of exposure and produced a Cd concentration of 2.78 μ g/l, which is slightly above the detection limit and far below EPA standards of 1,000 μ g/l. The first sample collected was the only one that had detectable concentrations of dissolved cadmium in surface runoff throughout the period of the study. No detectable concentrations of cadmium occurred in leachate from the 11 RAP samples evaluated. The results indicated that RAP does not pose a threat to the environment from cadmium contamination.

Findings from the limerock control site were very similar to those found from the RAP, (Appendix Table J.2 and Figure 4.35), which showed that the first detectable cadmium surface runoff concentration, of 2.21 μ g/l, in occurred after 44 days of exposure. A second detectable concentration of 3.28 μ g/l, much less than the 1000 μ g/l EPA standard, was found in the Limerock surface water samples at 141 exposure days. Leachate from Limerock site had no detectable concentrations of cadmium throughout the period of the study. The results indicated that Limerock does not pose a threat to the environment from silver contamination.

4.15.1.4 Chromium (Cr) Concentrations in Runoff and Leachate Samples

Appendix Table J.3 and Figure 4.36 show the concentration of chromium in surface runoff and leachate samples collected on site. There were 14 sampling periods over 165 days, yielding data for 50 adequate samples out of a possible 84. There were insufficient quantities retrieved for testing in the remaining 34 samples. Three tests were conducted on each of the 50 samples and 49, or 98 percent, produced results below the detectable limit of 5 μ g/l for chromium. There were 27 adequate samples collected from the RAP collection system and all were below the detectable limit. There were 23 adequate samples collected from the Limerock collection system, of which 22, or 96 percent, were below the detectable limit.

None of the surface runoff and leachate samples collected from the RAP site produced detectable concentrations of chromium. Similar results were found for the limerock site, except that the first surface runoff sample had a chromium concentration of about 9 μ g/l. It was assumed that this spike in concentration resulted from an unknown external source. Note this data represents only for four percent of the total chromium samples in the Limerock. The results indicate that neither RAP nor Limerock pose a threat to the environment from chromium contamination.

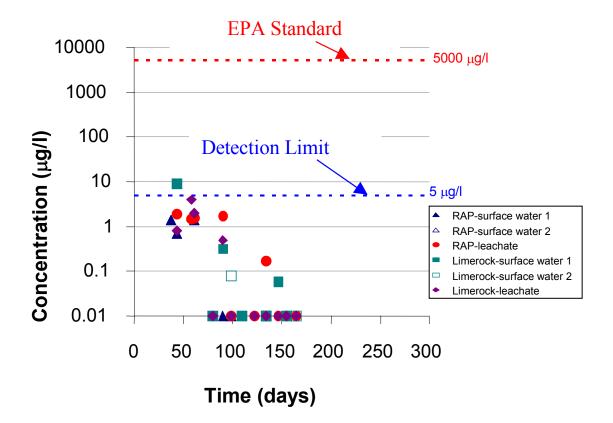


Figure 4.36 Chromium (Cr) Concentration versus Time in Surface Runoff and Leachate Collected from the RAP and Limerock Collection Systems.

4.15.1.5 Lead (Pb) Concentrations in Runoff and Leachate Samples

Appendix Table J.4 and Figure 4.37 show the concentrations of lead in surface runoff and leachate samples collected on site. There were 17 sampling periods over 290 days, yielding data for 65 adequate samples out of a possible 102. There were insufficient quantities retrieved for testing in the remaining 37 samples. Three tests were conducted on each of the 65 samples and 54, or 83 percent, produced results that were below the detectable limit of 5 μ g/l for lead. The three tests conducted on each of the 36 adequate RAP samples produced 32 sets, or 89 percent, below the detectable limit. There were 29 adequate samples collected from the Limerock collection system, of which 22 sets, or 76 percent, were below the detectable limit.

The first surface runoff samples from the RAP site were collected after 38 days of exposure and displayed a concentration of about 39 μ g/l. The second detectable concentration of lead was found in the sample on the 61st exposure day displaying a concentration about 335 μ g/l. It was not until 165-day of exposure when a third detectable concentration of lead (21 μ g/l) was again found in the surface runoff sample. Concentrations above the detectable limit were only found in samples obtained from the 1st tank of the surface runoff collection system. It was concluded that the three spikes in the lead concentrations within the RAP resulted from external sources. Possible sources could be the vehicular traffic on the pavement prior to recycling such as a wheel balance weight or could be naturally occurring in the aggregate used in the asphalt mix from which the RAP comes.

The only detectable concentration of lead in leachate from the RAP site was found from the sample obtained on the 58th exposure day which displayed a concentration of 7.76 μ g/l, slightly above the detection limit of 5 μ g/l, and far below EPA lead standard of 5,000 μ g/l. The remaining leachate samples showed no detectable concentrations of lead.

Data from the surface runoff at the limerock site indicated several concentrations of lead, slightly above the detection limit (Appendix Table J.4 and Figure 4.37). Limerock leachate samples had only two instances where detectable lead concentrations were produced.

The results indicate that neither RAP nor Limerock pose a threat to the environment from lead contamination.

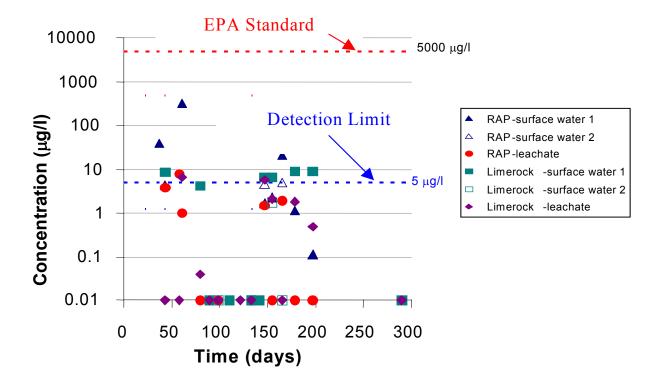


Figure 4.37 Lead (Pb) Concentration versus Time in Surface Runoff and Leachate Collected from the RAP and Limerock Collection Systems.

4.15.1.6 Selenium (Se) Concentrations in Runoff and Leachate Samples

Appendix Table J.5 and Figure 4.38 show the concentration of selenium in surface runoff and leachate samples collected on site. There were 14 sampling periods over 165 days, yielding data for 50 adequate samples out of a possible 84. There were insufficient quantities retrieved for testing in the remaining 34 samples. Three tests were conducted on each of the 50 samples and 9, or 18 percent, produced results that were below the detectable limit of 1 μ g/l for selenium. Three tests were conducted on each of the 27 RAP samples and 9, or 33 percent, produced results that were below the detectable limit of 1 μ g/l for selenium. All 23 samples obtained from the Limerock collection system produced results above detectable limit of 1 μ g/l for selenium.

Several RAP surface runoff samples produced selenium concentrations just above the detection limit of 1 μ g/l. Samples were retrieved from both the 1st and 2nd tanks for the 134th exposure day. Samples from the 2nd surface runoff tank had detectable concentrations, while samples from the 1st tank had no detectable concentration. This anomaly was assumed to be the result of some unknown source of selenium, which was present in the 2nd tank.

Leachate samples from the RAP site produced one slightly elevated selenium concentration. This outlier occurred for the sample retrieved at day 44. All remaining data, except one, showed detectable concentrations slightly higher or near to the detection limit. The high value of 85 μ g/l at day 44, was still well below the EPA standard of 1000 μ g/l. It was assumed to be the result of an unknown source of selenium.

Limerock surface runoff samples produced an average selenium concentration of 19.37 mg/l, which is well below the EPA Standard of. Samples were retrieved from both the 1^{st} and 2^{nd} surface runoff tanks.

Leachate samples from the RAP site produced elevated selenium concentrations. Although the average throughout the study was 426.53 µg/l, a

sudden spike in the concentrations occurred on after the 90th sampling day. Two values slightly above the 1000 μ g/l EPA Standard occurred on the 90th and 99th sampling days, and the concentrations generally decreased with time until the sampling operation was completed. It was assumed that this peak was the result of an unknown source of selenium, which might have occurred from a change in the pH or temperature of the liquid.

The presence of selenium in both the surface and leachate waters is not surprising because this chemical exists naturally in the soil, surface water and groundwater. Weathering of rocks and soils transports selenium into the environment (U.S. Department of Interior Bureau of Reclamation, 2001)

The results from both the surface water and leachate water analyses indicate that RAP does not pose a threat to the environment from selenium contamination. Limerock displayed concentrations near the EPA Standard which can be expected from materials formed through sedimentary deposits.

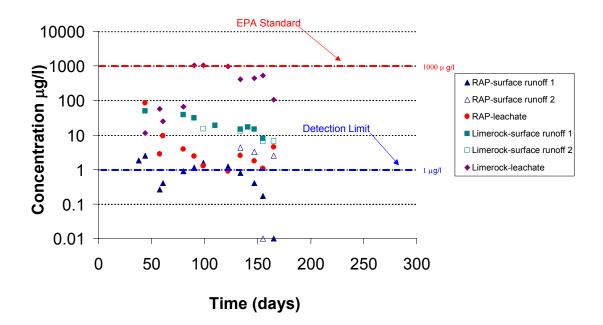


Figure 4.38 Selenium (Se) Concentration versus Time in Surface Runoff and Leachate Collected from the RAP and Limerock Collection Systems.

4.15.2 Laboratory Studies

4.15.2.1 TCLP and SPLP Tests

Laboratory TCLP tests conducted on RAP and limerock according to EPA methods showed that concentrations of silver (Ag), cadmium (Cd), and chromium (Cr) were not detectable (Table 4.11). As was the case for all environmental testing, three trials were performed on each sample and an average was determined. This process yielded a total of 30 trials on the RAP and Limerock samples. Of the 30 trials, 22 or 73 percent yielded results below the detectable limit. All of the TCLP and SPLP results above the detectable limit were well below the EPA Standards

(Tables 4.11 and 4.12). Lead was detected in one of the three replicates of the limerock sample; while selenium was detected in all three replicates of the limerock sample (Table 4.11). For RAP, lead was found in all three replicates at a concentration close to the detection limit, while selenium was only found in one of the three replicates at a concentration just above the detection limit.

Laboratory SPLP tests conducted on RAP and limerock according to EPA methods showed that concentrations of silver (Ag), cadmium (Cd), chromium (Cr), and lead (Pb) were not detectable (Table 4.12). Of the 30 total trials, 27 or 90 percent produced results below the detectable limit. Selenium was found in all three replicates of limerock samples with a mean concentration of 9.83 μ g/l, which again is well below the EPA standard of 1000 μ g/l. For RAP, no detectable selenium concentrations were found.

Concentrations of selenium in both TCLP and SPLP were very low (10 μ g/l), about two orders of magnitude lower than EPA standards. The detectable concentrations of selenium can be attributed to the leachable fraction of selenium in limerock, introduced from surrounding soils during its process (U.S. Department of Interior Bureau of Reclamation, 2001). No records were available about the source, process, and storage of limerock used in the study, therefore, it was not possible to investigate their possible inputs to the limerock matrix. Further studies would need to be conducted to determine the leachable fraction of selenium.

	Concentrations (µg/l)				
	Ag	Cd	Cr	Pb	Se
Limerock					
1	BDL	BDL	BDL	34.84	10.95
2	BDL	BDL	BDL	BDL	8.99
3	BDL	BDL	BDL	BDL	9.54
Mean	BDL	BDL	BDL	11.61	9.83
RAP					
1	BDL	BDL	BDL	7.96	BDL
2	BDL	BDL	BDL	5.99	BDL
3	BDL	BDL	BDL	5.57	1.06
Mean	BDL	BDL	BDL	6.51	0.35
EPA standards	5,000	1,000	5,000	5,000	1,000

Table 4.11 Results of TCLP test on limerock and RAP

BDL = below detection limit (Ag < 1 μ g/l, Cd < 1 μ g/l, Cr < 5 μ g/l, Pb < 5 μ g/l, Se < 1 μ g/l)

	Concentrations (µg/l)				
	Ag	Cd	Cr	Pb	Se
Limerock					
1	BDL	BDL	BDL	BDL	11.66
2	BDL	BDL	BDL	BDL	9.53
3	BDL	BDL	BDL	BDL	10.71
mean	BDL	BDL	BDL	BDL	10.63
RAP					
1	BDL	BDL	BDL	BDL	BDL
2	BDL	BDL	BDL	BDL	BDL
3	BDL	BDL	BDL	BDL	BDL
mean	BDL	BDL	BDL	BDL	BDL
EPA SPLP standards	5,000	1,000	5,000	5,000	1,000

Table 4.12 Results of SPLP tests on limerock and RAP

BDL = Below detection limit (Ag < 1 μ g/l, Cd < 1 μ g/l, Cr < 5 μ g/l, Pb < 5 μ g/l, Se < 1 μ g/l)

4.15.2.2 Column Leaching Results

Results of column leaching tests using DDW and synthetic acid rain (SAR) produced no detectable concentrations of silver and chromium from RAP or limerock and are not discussed in further detail. Appendix Tables J.6 - J.8 and Figures 4.39 - 4.41 show the detectable concentrations of cadmium, lead, and selenium, respectively.

4.15.2.3 Cadmium

Column leaching tests conducted with DDW showed no leachable cadmium from either RAP or limerock (Appendix Table J.6 and Figure 4.39). When SAR was introduced to the RAP column, leachable cadmium was released in a decreasing trend over time. The concentration of cadmium in the leachate was far below the EPA regulatory standard of 1,000 μ g/l. After 300 minutes of contact time, no detectable cadmium concentrations were found. The results indicate that cadmium leachate from RAP, when in contact with aqueous solutions of either DDW or SAR, has no significant effect on the environment.

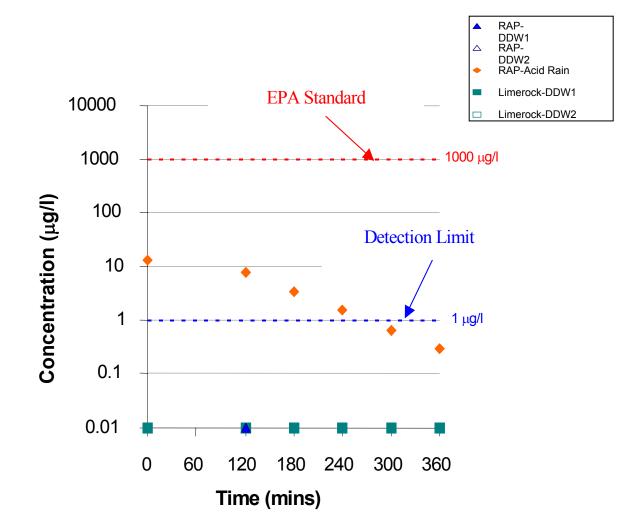


Figure 4.39 Concentration of Cadmium versus time in Leachate from Column Leaching Tests

4.15.2.4 Lead

Appendix Table J.7 and Figure 4.40 show the concentration of lead from column leaching tests. No detectable lead concentrations were produced from RAP columns exposed to either the DDW or SAR leaching media. For Limerock, detectable concentrations well below the EPA Standard of 5000 μ g/l were found at 120 minutes and 180 minutes, respectively. After 240 minutes of contact time, no detectable lead concentrations were found. The results indicate that lead leachate from RAP, when in contact with aqueous solutions or either DDW or SAR, has no significant effect on the environment.

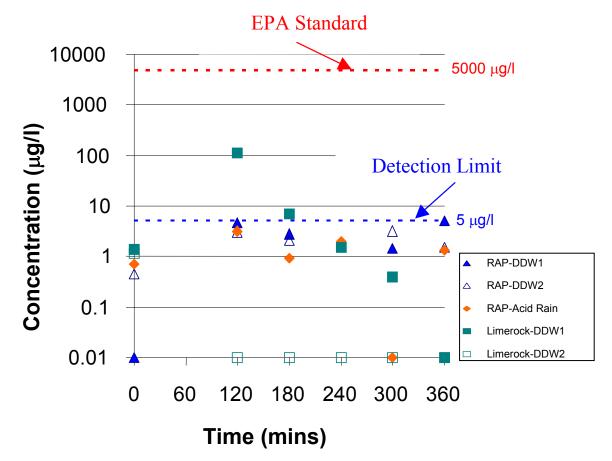


Figure 4.40 Concentration of Lead versus time in Leachate from Column Leaching Tests

4.15.2.5 Selenium

Appendix Table J.8 and Figure 4.41 show the concentrations of selenium in column leaching tests. When DDW was introduced to the RAP columns, two detectable concentrations were found in each of the duplicated columns near the detection limit. When SAR was introduced, no detectable concentrations were found. The results indicate that selenium leachate from RAP, when in contact with aqueous solutions of either DDW or SAR, has no significant effect on the environment.

When DDW was introduced to the Limerock columns, concentrations in excess of the EPA Standard were found. These concentrations generally decreased with time of exposure (Appendix Table J.8). As was stated previously, Selenium occurs naturally in sedimentary deposits. Because there was no information available on the source, storage and process of the Limerock used in this study, it is not possible to determine the cause of these high concentrations. Determination of this value was beyond the scope of the project.

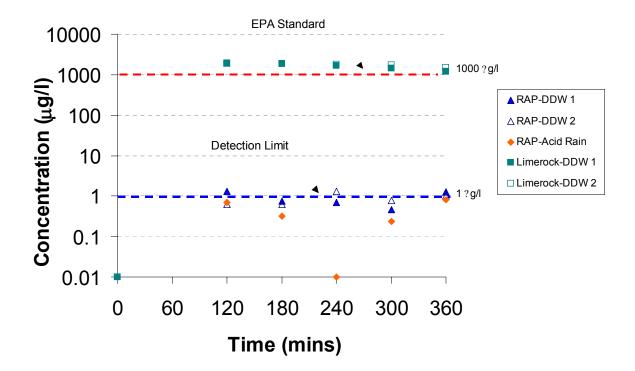


Figure 4.41 Concentration of Selenium in Leachate from Column Leaching Tests

4.15.3 Environmental Summary

Tables 4.13 and 4.14 present a summary of the testing for both RAP and Limerock, respectively. The data presented in the tables are the average concentrations for the data above the detection limit along with the percent of samples that produced data below the detectable limit of the lab equipment. Evaluation of the data in these tables indicates that RAP does not pose any threat to the environment, and that most of the data even falls below the detection limit of the equipment used. Concentrations as high as $10 \mu g/l$ were rarely observed showing how safe these materials are from an environmental standpoint.

Data in Table 4.13 indicates shows that none of the chemicals leach into the environment from RAP at significant levels regardless of the type of test

conducted. Samples were evaluated using four different testing protocols and none of the results are near the EPA Standards. As stated previously, the anomaly in the lead testing is most likely due to an external source of contamination, as it only occurs in one test protocol

Data in Table 4.14 indicates that limerock contains about the same concentrations of the five metals as RAP. Again none of the concentrations are near the EPA standards and lead displayed a slightly elevated concentration.

	Silver	Cadmium	Chromium	Lead	Selenium
Field Surface Runoff Ave > BDL (µg/I)	1.79	2.78	< 5	131.31	2.29
% BDL	62	94	100	86	50
Field Leachate Water Ave > BDL (μ g/l)	1.65	< 1	< 5	7.76	11.46
% BDL	45	100	100	93	9
Lab Column Leaching with DDW Ave >					
BDL (μg/l)	< 1	< 1	< 5	< 5	1.22
% BDL	100	100	100	100	67
Lab Column Leaching with SAR Ave >					
BDL (μg/l)	< 1	6.33	< 5	< 5	< 1
% BDL	100	33	100	100	100
Detection Limit (µg/l)	1	1	5	5	1
EPA Standard (µg/I)	5000	1000	5000	5000	1000

Table 4.13 Environmental Testing Summary for RAP

Table 4.14 Environmental Testing Summary on Limerock

	Silver	Cadmium	Chromium	Lead	Selenium
Field Surface Runoff Ave > BDL (µg/I)	1.41	2.75	9.14	7.80	19.37
% BDL	42	83	92	67	-
Field Leachate Water Ave > BDL (μg/l)	1.54	< 1	< 5	6.03	426.53
% BDL	36	100	100	86	-
Lab Column Leaching with DDW Ave >			_		
BDL (μg/l)	< 1	< 1	< 5	59.94	1693.85
% BDL	100	100	100	67	0
Detection Limit (µg/I)	1	1	5	5	1
EPA Standard (μg/l)	5000	1000	5000	5000	1000

5. Conclusions

5.1 Initial Strength Gain Conclusions

Field testing to document the initial change in the engineering behavior of RAP based on strength and stiffness characteristics from the LBR, Clegg, FWD and SSG tests yielded the following conclusions.

- FWD, Clegg, and SSG results consistently modeled the initial strength gains at lower strain levels, while the LBR values determined from field CBR's reflect its strength at higher strains.
- 2. The strength-deformation characteristics of RAP increased with time after placement over the eight-week testing period while the limerock strength-deformation characteristics varied due to moisture changes, therefore, RAP was less susceptible to moisture than limerock.
 - a) LBR, Clegg, and FWD test results showed a 50% increase in the engineering properties of RAP at week eight.
 - b) SSG test results indicate a 15% increase in the stiffness of RAP at week eight.
- The LBR testing procedure yields strength-deformation characteristics of RAP that are one-third those produced by the Clegg, FWD, and SSG.
- 4. Based on the small strain stiffness results of the Clegg, FWD, and SSG testing, RAP performed in a manner similar to limerock.

Therefore, RAP usage should be limited to subgrade applications or to sub-base applications below rigid pavements once the concerns over creep potential, or large strain, are clarified

5. Comparisons of RAP to limerock behavior using the Clegg, FWD, and SSG show that RAP achieved 80 to 115 % the stiffness of limerock during the eight-week testing intervals. Thus, the Clegg, FWD and SSG tests indicate that RAP is equivalent in stiffness to limerock.

5.2 RAP-Soil Mixing Conclusions

Laboratory testing to document the strength and drainage characteristics of RAP-soil mixtures lead to the following conclusions.

- 1. The addition of fine sand (i.e. material passing the #40 sieve) to RAP provided an improvement in density, bearing strength, and stiffness.
 - a. The density and LBR improved with the addition of material passing the #40 sieve over the ranges examined in this study. The 80% RAP 20% soil mixture provided significant improvements in density and strength characteristics. The 60% RAP 40% soil mixture yielded better density and strength characteristics than 100% RAP.
 - b. The major improvements in LBR are due to the added material passing the #40 sieve size, and not because of slight increases in density.
 - c. Significant increase in the secant modulus was only achieved for the 80% RAP- 20% soil mixture.

- d. The angle of internal friction decreased while the cohesion increased with the addition of material passing the #40 sieve.
- e. The RAP-soil mixtures were classified as an A-1-b soil according to the AASHTO classification.
- The permeability of RAP and RAP-soil mixtures compacted to FM 5-521 classified as material providing good drainage and as a poorly drained material respectively. Permeability of the RAP-soil mixtures decreased with the addition of material passing the #40 sieve.
- RAP yielded higher resilient moduli than the RAP-soil mixtures. The higher resilient modulus of RAP might be attributed to the resilient modulus test procedure. The resilient modulus decreased with the addition of material passing the #40 sieve.
- 4. The fine sand used in this study was a very difficult material to process and is not recommended for RAP-soil mixtures. A fine, non-organic sand with similar grain-size distribution is recommended for mixing with RAP.
- RAP and RAP-soil mixtures met the minimum LBR requirement of 40 for subgrade material, indicating that RAP is acceptable as a stabilizer for subgrade construction.
- 6. RAP and RAP-soil mixtures did not meet the minimum LBR requirement of 100 for base application in highway construction.
- 7. The estimated layer coefficients for base material (a₂) of the RAP and 80% RAP – 20% soil mixture compare well with values specified by the FDOT for graded aggregate base material. The base layer coefficients decreased with the addition of material passing the #40 sieve.
- In general, the 80% RAP 20% soil mixture provided the best strength properties while maintaining a reasonable permeability coefficient.

5.3 Environmental Conclusions

Both the laboratory and field investigations indicate that the use of RAP as a highway fill poses no environmental concerns. Concentrations reported for the heavy metals evaluated in RAP (i.e., Silver, Cadmium, Chromium, Lead and Selenium) are well below all EPA Standards.

The testing protocol, which included four types of environmental evaluations, resulted in similar conclusions indicating these tests were properly conducted. With the exception of Selenium in Limerock, all metals evaluated yielded similar environmental properties in both the RAP and the limerock control. Selenium occurs naturally in many geologic deposits and influences the concentration in limerock.

6. Recommendations

RAP has proven to be a very useful highway fill material. The following recommendations address the several areas of concern that still exist.

- The long-term strength deformation (i.e., creep or large strain) behavior of RAP and RAP-soil mixes should be investigated. Soils selected for mixing with RAP should increase the percentage of material passing the #40 sieve. Both laboratory and field tests should be conducted. To evaluate the long-term behavior, the FDOT Materials Office test pits in Gainesville, Florida should be used and the testing protocol outlined in the FDOT Materials Manual (2000) should be followed.
- 2. The correlations between LBR and dynamic tests such as the Clegg, FWD, or SSG should be developed from several field sites around the state. Based on results to date it is believed that the Clegg test best represents the strength-deformation characteristics of RAP and would be the recommended choice. Static and dynamic plate testing could be performed in conjunction with the Clegg tests at FDOT's Materials Office to develop correlations between the CIV and the modulus of subgrade reaction.
- Following the research on the long-term strength-deformation characteristics, a full-scale highway study using RAP in sub-base, subgrade and general fill applications should be conducted. The study site should be at least ¹/₂ mile long. RAP should be compared to the other FDOT approved materials.

4. Field compaction of RAP has been successfully performed, by flooding the area to be compacted prior to using vibratory compaction on 6-inch lifts. This is contrary to the conventional Proctor moisture-density approach. The effects of moisture on field compaction of RAP must be understood so it can be specified in the FDOT Specifications.

7. Field Specifications

The following specifications, presented in the Phase I report in the format currently used in the FDOT Specifications for Road and Bridge Construction, were modified to reflect the results from the Phase II findings. They are to be considered preliminary or developmental at this point and will be refined further during future research that will focus on the field and creep behavior of RAP and RAP-Soil mixes.

Special comments are included in this section to substantiate the reasons for the specifications. All comments are shown in italics. These specifications are presented for inclusion in two sections of the Florida Department of Transportation Standard Specifications for Road and Bridge Construction. One portion will be included in the section in Division II, under Construction Details for Base Courses as Section 283 and the other portion will be specified under the section in Division III, under Flexible Pavement Materials in Section 918.

SECTION 283 RECLAIMED ASPHALT PAVEMENT SUB-BASE

RAP is limited to sub-base applications below rigid pavements because of its excellent drainage characteristics, low LBR values, and potential for creep.

283-1 Description.

Construct a sub-base course comprised of reclaimed asphalt pavement (RAP) material below rigid pavement.

The post-milling processes that reduce the size of RAP with tubgrinder or hammermill crushers, produced a uniform material with desirable highway engineering properties. RAP stockpiles form a hard crust when exposed to summer temperatures, therefore, samples should be obtained from material below this crust, which is typically six to10 inches thick. Special care should be taken for stockpiles of RAP obtained from residential construction; these stockpiles often include large slabs that are unsuitable for FDOT applications.

283-2 Materials.

The contractor may use RAP material, obtained by either milling or crushing an existing asphalt pavement, meeting the following gradation requirements:

Sieve Size	Percent By Weight Passing
1.5-inch	90 to 100
3/8 -inch	50 to 90
# 10	25 to 60
#200	Less than 5

Gradation analyses shall conform to FM 1-T 027 with the following exceptions:

(1) Air-dry samples to surface dry condition (2% or less moisture).

(2) If using mechanical shakers, use a sieving time of 15 minutes minimum.

When the RAP material is stockpiled from a previous Department project and the composition of the existing pavement is known, the Engineer may approve the material on the basis of composition. When the composition of stockpiled RAP is not known, use the following procedure for approval:

(1) Conduct a minimum of six extraction gradation analyses of the RAP material. Take samples at random locations in the stockpile.

(2) Request the Engineer to make a visual inspection of the stockpile of the RAP material. Based on this visual inspection of the stockpiled material and the results of the gradation analyses, the Engineer will determine the suitability of the materials.

(3) The Engineer may require crushing of stockpiled material to meet gradation criterion.

Preliminary compaction based on dry rodded unit weight testing quickly and accurately yielded the variations in density of RAP-Soil mixes results. The dry rodded densities are to be used only as an indicator of which mixtures provide the desired density. Proctor testing should be used to further validate the moisture-density relationships.

The addition of an A-2-6 soil, increased the percentage of material passing the number 40 sieve resulting in an increase in the maximum dry Proctor density and LBR, without adversely affecting the permeability. It is expected that fine aggregates in the A-2 and A-3 categories would yield similar results for RAP-Soil mixes. These properties were acceptable for 60/40 and 80/20 ratios of RAP to soil, however, the engineering properties were optimal at the 80/20 level. For ratios with more than 40 percent soil the permeability of the mix would adversely affect the drainage characteristics.

283-2.1 Mixtures of RAP and Fine Aggregate.

When RAP is mixed with a fine aggregate, the maximum allowable percentage of the soil is limited to 40 percent by weight. The soil added must meet the gradation requirements of Section 283-2 Materials.

283-3 Spreading RAP Material.

283-3.1 Method of Spreading: Spread the RAP with a blade or device, which strikes off the material uniformly to laying thickness and produces an even distribution of the RAP.

283-3.2 Number of Courses: When the specified compacted thickness of the sub-base is greater than 6-inches, construct the base in multiple courses. Place the first course to a thickness of approximately one-half the total thickness of the finished base, or sufficient additional thickness to bear the weight of the construction equipment without disturbing the subgrade. The compacted thickness of any course shall not exceed 6-inches.

283-4 Compacting and Finishing Base.

Although laboratory compaction tests have shown that RAP is insensitive to moisture content, flooding the area to be compacted and immediately using vibratory roller to achieve the required densities, most readily resulted in proper field compaction of RAP.

Field moisture contents obtained from nuclear density equipment must be carefully correlated to moisture contents from oven-dried samples.

283-4.1 General.

201-4.1.1 Single-Course Base: Construct as specified in 200-6.1.1. *201-4.1.2 Multiple-Course Base:* Construct as specified in 200-6.1.2.

283-4.2 Moisture Content: Meet the requirements of 200-6.2. Ensure that the moisture content at the time of compaction is 3% wet of optimum.

283-4.3 Density Requirements: After attaining the proper moisture content, compact the material to a density of not less than 98% of maximum density as determined by FM 5-521. Perform sub-base compaction using standard base compaction equipment, vibratory compactors, trench rollers, or other special equipment that will provide the density requirements specified herein.

283-4.4 Density Tests: Meet the requirements of 200-6.4.

283-5 Testing Surface.

In the testing of the surface, do not take measurements in small holes caused by the grader pulling out individual pieces of aggregate.

SECTION 918 RECLAIMED ASPHALT PAVEMENT MATERIAL FOR SUB-BASE

918-1 General.

This section governs the material requirements for the construction of a sub-base course using RAP or stabilized with RAP below rigid pavements.

Although lab compaction research has shown RAP to be insensitive to moisture content, flooding the area to be compacted and immediately using vibratory roller to achieve the required densities most readily resulted in proper field compaction of RAP.

918-2 Furnishing of Material.

Except as might be specifically shown otherwise, all RAP material and the sources thereof shall be furnished by the Contractor. Approval of RAP sources shall be in accordance with 6-3.3. Any RAP material occurring in State-furnished borrow areas shall not be used by the Contractor in constructing the sub-base, unless permitted by the plans or other contract documents.

The post-milling processes that reduce the size of RAP with tubgrinder or hammermill crushers produced a uniform material with desirable highway engineering properties.

918-3 Composition.

The material used shall be reclaimed asphalt pavement (RAP).

918-4 Liquid Limit and Plasticity Requirements.

None required.

918-5 Mechanical Requirements.

918-5.1 Deleterious Material: RAP material shall contain not more than five percent of any lumps, balls or pockets of foreign material in sufficient quantity as to be detrimental to the proper bonding, finishing, or strength of the RAP base.

918-5.2 Gradation and Size Requirements: Meet the requirements of 283-2. All crushing or breaking-up, which might be necessary in order to meet such size requirements, shall be done before the material is placed on the road.

918-6 Alternative Acceptance Means.

Field-testing of RAP indicated RAP had similar stiffness to the Limerock used in a control section at small strains. Field-testing was performed with Field CBR's, Falling Weight Deflectometers, Clegg Impact Hammers and the Soil Stiffness Gauge.

918-6.1 Field LBR: Field CBR (ASTM D4429) values shall be taken at the following time intervals and converted to LBR values, and shall be performed directly on the sub-base. At each testing interval the corresponding minimum average LBR values shall be met:

Testing Interval	Minimum Average LBR Value
Finished Construction	15
2-months	35

918-6.2 Falling Weight Deflectometer: Impulse Stiffness Moduli (ISM) values shall be determined at the following time intervals based on FWD tests conducted using a falling weight height that produces a 9000 pound impulse loading directly on the subbase. The ISM will be determined by dividing the maximum impulse load by the deflection of the geophone directly under the loading plate, and reported in units of kips per mil. At each testing interval the corresponding minimum average ISM values shall be met:

Testing Interval	Minimum Average ISM Value
Finished Construction	0.30
2-months	0.40

918-6.3 Clegg Impact Test: Clegg Impact Values (CIV) shall be taken at the following time intervals. A minimum of four, Clegg Impact tests should be performed directly on the sub-base at each specified location on the RAP. At each testing interval the corresponding minimum average CIV values shall be met:

Testing Interval	Minimum Average CIV Value
Finished Construction	26
2-months	40

918-6.4 Soil Stiffness Gauge: Soil Stiffness Gauge (SSG) values, reported in units of kips per inch, shall be taken at the following time intervals directly on the subbase. At each testing interval the corresponding minimum average SSG values shall be met:

Testing Interval	Minimum Average SSG Value
Finished Construction	100
2-months	120

8. References

Alavi, S., Merport, T., Wilson, T., Groeger, J., and Lopez, A. (1997) *LTTP* Materials Characterization Program: Resilient Modulus of Unbound Materials (LTTP Protocol P46) Laboratory Startup and Quality Control Procedure. Federal Highway Administration Report No. FHWA-RD-96-176. January.

- American Association of State Highway and Transportation Officials. (1993) AASHTO Guide for Design of Pavement Structures.
- Ahrens, D. (2001). <u>Essentials of Meteorology an Invitation to the Atmosphere</u>.Wadsworth Group. Pacific Grove, California .
- ASTM Standard Method, (1994) <u>Annual Book of ASTM Standards</u>, American Society for Testing and Materials, 04.02 pp. 1-4, 162-168, 248-261.
- ASTM Standard Method, (2002) <u>Annual Book of ASTM Standards</u>, American Society for Testing and Materials, 04.08 pp. 1010-1031.
- Barksdale, R.D. (1991) *The Aggregate Handbook*. Washington D.C.: National Stone Association.

- Bennert, T., Papp Jr., W.J., Maher, A., and Gucunski, N. (2000) <u>Utilization of</u> <u>Construction and Demolition Debris Under Traffic-Type Loading in Base</u> <u>and Subbase Applications.</u> Transportation Research Record No. 1714, TRB, National Research Council, Washington, D.C., pp. 33-39.
- Blanco, A.M., Bowders, J.J., and Donahue, J.P. (2003) <u>Laboratory and In-Situ</u> <u>Hydraulic Conductivity of Pavement Bases in Missouri.</u> Transportation Research Board, 82nd Annual Meeting, Compendium of Papers CD-ROM, Washington, D.C..
- Bromwell and Carrier, Inc. (BCI). (1996) Investigation and Demonstration of
 Beneficial uses of Muck Sediment from the Indian River Lagoon RFP No.
 95W231. BCI Project No. 959258.
- Bosso, Massimo. (1995) Effects of Waste Glass Content on the Shear and Deformation Characteristics of Conventional Florida Highway Aggregate.
 M.S. Thesis in Civil Engineering. Florida Institute of Technology. Melbourne, FL.
- Bush, A.J. & Thompson, M.R., (1990). Predicting Capacities of Low Volume Airfield Pavements, <u>Third International Conference on Bearing Capacities</u> of Roads and Airfields. 1071-1080.
- Casagrande, A., and Fadum, R.E. (1940) Notes on Soil Testing for Engineering Purposes. Soil Mechanics Series No. 8, Graduate School of Engineering, Harvard University, Cambridge, MA.

- Cedergren, H.R. (1987) *Drainage of Highway and Airfield Pavements*. Robert E. Krieger Publishing Company, Inc., Malabar.
- Central Testing Laboratory (2001). Florida Department of Transportation Aggregate Control Base Material Code Form. Leesburg, Florida.
- Chen, D., Wu, W., He, R., Bilyeu, J., and Arrelano, M. (2001). Evaluation of In-Situ Resilient Modulus Testing Techniques. <u>CD-ROM</u>, <u>Geogage™</u> <u>Documentation</u>. (Available from [Humboldt Mfg. Co., Norridge, Illinois, 60656]).
- Chesner W. H., R. J. Collins, and M. H. MacKay (1998). User Guidelines for Waste and By-Product Materials in Pavement Construction. Federal <u>Highway Administration</u>. Report no. FHWA-RD-97-148.
- Clary, J.A., DeGroot, D.J., and Highter, W.H. (1997) Structural numbers for Reclaimed Asphalt Pavement Base and Subbase Course Mixes. Final Report, Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, MA.
- Clegg, B. (1980). An Impact Soil Test as Alternative to California Bearing Ratio. <u>Proceedings of the Third ANZ Geomechanics Conference</u>. 225-230
- Cosentino, P., & Kalajian, E.H. (2001). <u>Developing Specifications for Using</u> <u>Recycled Asphalt Pavement as Base, Subbase, or General Fill Materials</u> (Final Report). (Available from [Florida Department of Transportation, 2006 N.E. Waldo Rd, Gainesville, Florida, 32309-8901]).

Crandell, J. (2001), Manager, Dr. Baden Clegg Pty Ltd. (Personal Communication).

- Das, B. M., (1989) "Soil Mechanics Laboratory Manual," Engineering Press, Inc., pp. 47-52.
- Davis, B. (2000) *Asphalt Pavement Recycling Leader*, California Asphalt Magazine, May/June.
- Doig, B (2000). <u>Influence of Storage Time and Temperature on the Triaxial</u> <u>Characterization of RAP</u>. M.S. Thesis in Civil Engineering, Florida Institute of Technology, Melbourne, Florida.
- <u>Dynatest (2000) Model 8000 Falling Weight Deflectometer Test System</u> <u>Specifications</u>, Dynatest International A/S.
- Fiedler, S., Nelson, C., Berkman, E.F., and DiMillo, A. (1998). Soil Stiffness Gauge for Soil Compaction Control. <u>Public Roads</u>, May/June, 5-10.
- Florida Department of Transportation. (1994) *Manual of Florida Sampling and Testing Methods.* State Materials Office, Fourth Edition. September.
- Florida Department of Transportation. (2000) Materials Manual Soils Materials and Foundations. State Materials Office, Topic No: 675-000-000 Section 2.1 Structural Layer Coefficients for Flexible Pavement Base Materials.
- Florida Department of Transportation. (2000). *Standard Specifications for Road and Bridge Construction*. Tallahassee, FL.

- Florida Department of Transportation (2002). Asphalt Pavement Recycling Summary, (Available from [Florida Department of Transportation, Maps and Publications Office, MS 12, 605 Suwannee Street, Tallahassee, Florida, 32399-0450]).
- Garg, N., and Thompson, M.R. (1996): "Lincoln Avenue Reclaimed Asphalt Pavement Base Project." *Transportation Research Record.* no. 1547 89-95.
- Head, K.H. (1986). <u>Manual of Soil Laboratory Testing</u> (Volume 3). John Wiley & Sons. New York.
- Holtz, R.D., and Kovacs, W.D. (1981). <u>An Introduction to Geotechnical</u> <u>Engineering.</u> Englewood Cliffs, New Jersey: Prentice Hall.
- Huang, Y.H. (1993). <u>Pavement Design and Analysis</u>. Prentice-Hall, Inc., New Jersey.
- Janoo, V.L. (1998). Field Testing of Stabilized Soil. Journal of Cold Regions Engineering, Volume 13, no.1, 37-53.
- Maher, M.H., Gucunski, N., and Papp Jr., W.J. (1997) Recycled Asphalt Pavement as Base and Sub-Base Material. Testing Soil Mixed with Waste or Recycled Materials (M.A. Wasemiller and K.B. Hoddinott, eds), ASTM SPT 1275, ASTM, Philadelphia, PA., pp. 42-53.

- Malerk, T. and Xanders, G., (2001), <u>Use of RAP Material in Roadway</u> <u>Construction – MB 1-00, Memorandum to</u> District Materials Engineers & District Construction Engineers.
- Main Roads. (2000). Application for the Impact Soil Tester. (Personal Communication).
- McClellan, G.H., Ruth, B.E., Eades, J.L., Fountain, K.B., and Blitch, G. (2001)
 Evaluation of Aggregates for Base Course Construction. Final Report,
 Department of Geology and Department of Civil Engineering, University of
 Florida, FL. WPI 0510753.
- Michalak, Chester H., & Scullion, Tom (1995). <u>Modulus 5.0: User's Manual</u>, Texas DOT, Research Report 1987-1.
- Mohammad, L.N., Puppala, A.J., and Alavilli, P. (1994) *Influence of Testing Procedure and LVDT Location on Resilient Modulus of Soils*.
 Transportation Research Record No. 1462, TRB, National Research Council, Washington, D.C., pp. 91-101.
- Montemayor, T.A., (1998). <u>Compaction and Strength-Deformation Characteristics</u> <u>Of Reclaimed Asphalt Pavement</u>. M.S. Thesis in Civil Engineering. Florida Institute of Technolgoy, Melbourne, Florida.
- Newcomb, D. and Birgisson, B. (1999). "Measuring In Situ Mechanical Properties of Pavement Subgrade Soils A Synthesis of Highway Practice."
 Transportation Research Board National Research Council. no. 278, 24-42.

- Ping, W.V., & Yu, Z. (1994). Evaluation of Laboratory Limerock Bearing Ratio Test on Pavement Soils in Florida, Journal of American Society of Civil <u>Engineers</u>. 223-230.
- Ping, W.V., and Ge, L. (1996) Evaluation of Resilient Modulus of Cemented Lime Rock Base Materials in Florida. Transportation Research Record No. 1546, TRB, National Research Council, Washington, D.C., pp. 1-12.
- Rodriquez, D. (2001). <u>Field Behavior of Reclaimed Asphalt Pavement As A Base</u>, <u>Subbase</u>, and <u>Subgrade</u>. M.S. Thesis in Civil Engineering, Florida Institute of Technology, Melbourne, Florida.
- Sayed, S.M., Pulsifier, J.M., and Schmitt, R.C. (1993): "Construction and Performance of Shoulders Using UNRAP Base." *Journal of Materials in Civil Engineering*. Vol 5, no. 3 321-338.
- Somayaji, Shan. (2001). *Civil Engineering Materials* (2nd ed). New Jersey: Prentice Hall.
- Taha, R., Ali, G, Basma, A., and Al-Turk, O. (1999) Evaluation of Reclaimed Asphalt Pavement Aggregate in Road Bases and Subbases. Transportation Research Record No. 1652, Volume 1, TRB, National Research Council, Washington, D.C., pp. 264-269.
- Terzaghi, K., and Peck, R.B. (1948) Soil Mechanics in Engineering Practice. John Wiley & Sons, Inc., New York.

- Townsend, T. G., and Brantley, (1998), Leaching Characteristics of Asphalt Road Waste. Final Report Florida Center for Solid and Hazardous Waste Management, University of Florida, Gainesville, Fl., pp. 90.
- TR News. (2001). "State Pools Fund to Study Nonnuclear Soil Gauge". May/June, 34.
- U.S. EPA., (1994) "Synthetic Precipitation Leaching Procedure" Method 1312. pp. 1312-1-1312-30.
- U.S. EPA., (1992) "<u>Toxicity Characteristic Leaching Procedure</u>" Method 1311. pp. 1311-1-1311-35.
- Webster, S. L., Brown, R.W., and Porter, J.R. (1994) "Force Projection Site Evaluation Using the Electric Cone Penetrometer (ECP) and the Dynamic Cone Penetrometer (DCP)", Technical Report GL-94-17, US Army Engineers Waterways Experiment Station, Vicksburg, MS, April 1994.

Appendix A

Field Moisture and Density Data

	WEEK 1					
Test	Wet Density	Speedy	Dry Density			
Depth	(pcf)	Moisture	(pcf)			
	1					
12 -inch	123.5	3.6	119.2			
6-inch	122.1	3.6	117.9			
	2	2				
12-inch	124.4	3.6	120.1			
6-inch	124	3.6	119.7			
	3	3				
12 -inch	123.9	3.5	119.7			
6-inch	122.9	3.5	118.7			
	4	ŀ				
12-inch	126.1	5.4	119.6			
6-inch	125.1	5.4	118.7			
	5	5				
12 -inch	122.9	3.5	118.7			
6-inch	123.7	3.5	119.5			
	e	•				
12-inch	125.7	3.8	121.1			
6-inch	124.9	3.8	120.3			
	7	7				
12 -inch	125.4	3.7	120.9			
6-inch	125	3.7	120.5			
	8	3				
12-inch	125.6	3.9	120.9			
6-inch	125.5	3.9	120.8			
	ç)				
12 -inch	123.6	8.5	113.9			
6-inch	123.7	8.5	114.0			
	1	0				
12-inch	122.6	8.5	113.0			
6-inch	122.2	8.5	112.6			
	1					
12 -inch	124.2	9.6	113.3			
6-inch	123.6	9.6	112.8			

	WEEK 2					
Test	Wet Density	Speedy	Dry Density			
Depth	(pcf)	Moisture	(pcf)			
	•					
12 -inch	124	3.5	119.8			
6-inch	123.9	3.5	119.7			
	2	2				
12-inch	123.2	4	118.5			
6-inch	124.8	4	120.0			
	3	3				
12 -inch	126.4	3.8	121.8			
6-inch	124.6	3.8	120.0			
	4	1				
12-inch	126.1	3.3	122.1			
6-inch	124.4	3.3	120.4			
	Ę	5				
12 -inch	126.4	5	120.4			
6-inch	125.4	5	119.4			
	6					
12-inch	125.8	4.1	120.8			
6-inch	125.3	4.1	120.4			
	7	7				
12 -inch	125.6	5	119.6			
6-inch	125.4	5	119.4			
	8	3				
12-inch	126	4.9	120.1			
6-inch	125	4.9	119.2			
	ç)				
12 -inch	125.1	9.2	114.6			
6-inch	124.1	9.2	113.6			
	1	-				
12-inch	122.7	10.6	110.9			
6-inch	122.5	10.6	110.8			
	11					
12 -inch	122.8	10	111.6			
6-inch	123.3	10	112.1			

	WEEK 4					
Test	Wet	Speedy	Dry			
Depth	Density	Moisture	Density			
	,	1				
12 -inch	123.9	2.9	120.4			
6-inch	122.4	2.9	119.0			
		2				
12-inch	125.9	2.9	122.4			
6-inch	125.8	2.9	122.3			
		3				
12 -inch	125.4	2.9	121.9			
6-inch	124.4	2.9	120.9			
		4				
12-inch	124.1	2.9	120.6			
6-inch	123.1	2.9	119.6			
	ļ	5				
12 -inch	125.2	2.9	121.7			
6-inch	124	2.9	120.5			
		6				
12-inch	124.9	2.9	121.4			
6-inch	124.9	2.9	121.4			
		7				
12 -inch	124.6	2.9	121.1			
6-inch	123.8	2.9	120.3			
		3				
12-inch	124.5	2.9	121.0			
6-inch	123.6	2.9	120.1			
		Э				
12 -inch	123.2	6.7	115.5			
6-inch	124.7	6.7	116.9			
	1	0				
12-inch	123.4	6.7	115.7			
6-inch	122.2	6.7	114.5			
	1	1				
12 -inch	122.9	6.7	115.2			
6-inch	121.2	6.7	113.6			

WEEK 6										
Test	Wet	Speedy	Dry							
Depth	Density	Moisture	Density							
		1								
12 -inch	126	4	121.2							
6-inch	123.8	4	119.0							
		2								
12-inch	125.4	4	120.6							
6-inch	122.9	4	118.2							
	° ,	3								
12 -inch	123.3	4	118.6							
6-inch	123.1	4	118.4							
		4								
12-inch	121.8	4	117.1							
6-inch	123.6	4	118.8							
		5								
12 -inch	124.8	4	120.0							
6-inch	123.8	4	119.0							
		6								
12-inch	124.5	4	119.7							
6-inch	123.2	4	118.5							
		7								
12 -inch	124.1	4	119.3							
6-inch	124.5	4	119.7							
	1	8								
12-inch	123.5	4	118.8							
6-inch	122.5	4	117.8							
		9								
12 -inch	121.1	6.4	113.8							
6-inch	122.2	6.6	114.6							
	1	0								
12-inch	117.6	6.8	110.1							
6-inch	120.8	6.8	113.1							
	1	1								
12 -inch	119.8	7.1	111.9							
6-inch	118.5	7.1	110.6							

WEEK 8										
Test	Wet	Speedy	Dry							
Depth	Density	Moisture	Density							
	,	1								
12 -inch	126.2	4.2	121.1							
6-inch	125.2	4.2	120.2							
		2								
12-inch	126.01	4.2	120.9							
6-inch	124.2	4.2	119.2							
		3								
12 -inch	126.5	4.2	121.4							
6-inch	123.8	4.2	118.8							
		4								
12-inch	125.2	4.2	120.2							
6-inch	124	4.2	119.0							
		5								
12 -inch	126.3	4.2	121.2							
6-inch	125.1	4.2	120.1							
		6								
12-inch	125.4	4.2	120.3							
6-inch	123.9	4.2	118.9							
	•	7								
12 -inch	126.2	4.2	121.1							
6-inch	124	4.2	119.0							
	1	8								
12-inch	126.5	4.2	121.4							
6-inch	125.5	4.2	120.4							
	ļ	9								
12 -inch	124.3	7	116.2							
6-inch	124.4	7.3	115.9							
	1	0								
12-inch	121.6	8.6	112.0							
6-inch	121	8.6	111.4							
	1	1								
12 -inch	123.7	9.4	113.1							
6-inch	123.5	9.5	112.8							

Appendix B

Falling Weight Deflectometer Data

R80	1	37	010	426F:	CT -1	36	5F10								
						03111 914 1			0	8	12	18	24	36	60
RAP															
			44			I41	114	111		Height	s				
418	377	142	54	30	30	28	21	6640	14.82	5.60	2.12	1.19	1.19	1.12	0.8
				25	43	38	30	9152	20.34	7.94	3.01	0.99	1.68	1.49	1.1
760	684	271	103	44	52	49	39	12080	26.93	10.67	4.07	1.73	2.05	1.95	1.5
S1.0	200	WB	44			I41	115	111		Height	s				
388	678	153	31	17	21	24	16	6168	26.68	6.04	1.22	0.66	0.82	0.95	0.6
554	818	221	50	17	26	33	25	8808	32.20	8.69	1.95	0.66	1.03	1.28	0.9
760	995	305	73	19	30					12.00					
S1.0	3	WB	44			I41	116	111		Height	s				• • • • •
403	479	162	59	24	31	28	22	6408	18.87	6.40	2.32	0.95	1.23	1.12	0.8
										8.87					
774	809	300	112	43	53					11.82					
S1.0	4	WB	44			I41	117:	111		Height.	s				
394	565	188	65	26	35	34	27	6256	22.26	7.41	2.57	1.03	1.40	1.33	1.0
560	753	264	94	36	48	46	37	8888	29.65	10.41	3.71	1.40	1.89	1.82	1.4
						61	49	12152	37.79	13.85	5.09	1.98	2.38	2.40	1.9
S1.0						I41	1181	111		Height.	5				• • • • •
391	613	213	67	18	30	34	26	6208	24.14	8.38	2.65	0.70	1.19	1.33	1.0
550	812	288	95	25	39	46	37	8736	31.99	11.34	3.75	0.99	1.52	1.82	1.4
										15.04					
S1.0										Height					
391	650	218	69	22	32	37	29	6208	25.60	8.60	2.73	0.87	1.27	1.45	1.1
556	835	298	99	35	43	52	40	8840	32.86	11.73	3.91	1.36	1.68	2.03	1.5
						66	54	12184	41.30	15.39	5.46	2.02	2.13	2.61	2.1
S1.0										Height:					
										7.45					
556	774	268	100	47	56	54	39	8840	30.48	10.54	3.95	1.85	2.22	2.11	1.5
										14.16					
S2.03	1	WB	44	14124		141	1251	11		Heights	3				
386	581	179	47	44	33	34	23	6136	22.88	7.06	1.83	1.73	1.31	1.33	0.8
548	131	248	13	33	46	45	35	8712	29.02	9.75	2.89	1.32	1.81	1.78	1.5
						62	97	11928	30.10	12.92	4.19	2.10	2.42	2.99	1.0
S2.02		WB			23					Heights					
413	395	165	73	31	44	39	29	0000	15.53	6.48 8.87	2.89	1.29	1.12	1.55	1.1
			135	68	19					12.00					
S2.03				1.000	07					Heights 9.26					
			59							12.62					
			133	26	11	69	50	12072	11 CA	16.67	5 25	1 40	1.51	2.11	2.3
S2.04		WB		50	4.1	T 41	1611	11	44.04	Heights		1411010	7.00		2.0
				22	33	191.	31 TOTT	6102	25.31	7.37	2 20	0 91	1 31	1 57	1 2
509	020	262	95	20	11	55	13	9794	32 70	10.32	2.20	1 28	1 72	2 15	1 7
										13.89					
62 01	5040	MD	141	14	50	T41	1521	11	*** • ** *	Heights	3110	NUMBER :	4++	2.00	
32.00	500	100	44	2.4	36	27	27	6010	20 20	7.41	2 16	0 05	1 44	1 45	1 0
393	714	100	77	24	17	53	20	8998	28.10	10.32	3 01	1 07	1 85	2 07	1 5
					55	73	51	1 2209	36 71	13.81	1 23	1 57	2 17	2 86	2 0
S2.06		WB	108	40	55	I41:				Heights					
			44 55	26	30					6.62					
			80		51					9.31					
			109		65					12.57					
		WB		30	00	141:				Heights					
S2.07 390				10	20	747.	201			9.09					
548				18 27	38	51	29	8712	34 07	12.26	3 70	1 07	1 48	1 99	1 5
				40	15	65	40	12104	42 84	12.20	5.54	1 57	1.76	2.57	2 1
7621				40	40										
\$3.01 375				E	17	1411				Heights 6.79					
			22	1 6	1/	20	30	0550	35 01	9.75	1 75	0.21	0.00	1 53	1 1
		240	44	13	44	29	20	00022	20.27	3.13	1.10	0.50	0.00	1.00	T + T

7451109	332	70	16	25	52	40	11840	43 68	13.06	2 77	0 62	0 99	2 03	1 58
\$3.02									Heights					
377 632	1.00	50	20	20	27	23	5000	24 80	7 15	2 30	0 78	1 15	1 09	0.90
541 824														
7451030									13.32					
53.03	WB			51					Heights					
368 771			10	0.2	191	.138	TTT	20.20	Heights					
									10.37					
526 938														
7311122			24	34	52	40	11616	44.18	13.67	3.54	0.95	1.35	2.03	1.58
S3.04 394 510	WB	44		12000	141	159	111	-	Heights				*****	
394 510	164	39	7	24	28	20	6256	20.09	6.44	1.55	0.29	0.94	1.12	0.77
552 676														
768 881	313	97	25	39	53	39	12208	34.70	12.31	3.83	0.99	1.52	2.07	1.54
									Heights					
393 535	1.22.00													
557 719									9.17					
768 934			31	46	52	39	12208	36.79	12.53	4.32	1.24	1.81	2.03	1.54
\$3.06	WB	44			I41	200	111		Heights	i nan en				
388 581														
548 757														
759 973	314	90	44						12.35					
53.07					I41	201	111		Heights					
388 562	189	56	23	34	31	24	6168	22.13	7.45	2.20	0.91	1.35	1.20	0.93
549 769	262	80	30	44	43	33	8728	30.27	10.32	3.14	1.19	1.72	1.70	1.29
759 996	352	109	40	55	58	45	12056	39.21	13.85	4.28	1.57	2.17	2.28	1.78
S4.01	WB	44			I41	2033	111	1	Heights					
390 630	300	122	36	35	29	24	6200	24.80	11.82	4.80	1.40	1.40	1.16	0.93
551 789	388	176	62	53	41	34	8760	31.07	15.26	6.92	2.43	2.09	1.62	1.33
759 957	482	232	92	73	56	45	12064	37.67	18.97	9.12	3.63	2.87	2.20	1.78
S4.02	WB	44			141	2071	111	1000	leights					
409 483	232	114	46	42	31	25	6496	19.00	9.13	4.48	1.81	1.64	1.20	0.97
581 660									12.66					
779 820									15.88					
\$4.03									leights					
404 538			48	43	28	24	6424	21.17	9.44	4.80	1,90	1.68	1.12	0.93
568 677									12.44					
774 833														
	WB		102	00	TAL	2121	11	L	leights			5.55	H.443	
459 579			54	32	17	17	7296	22 80	11 16	5 50	2 14	1 27	0 66	0 69
439 579 613 714														
757 834														
	400	239	108	10	45	21	12022	54.02	11.13	2.41	4.24	5.00	1.70	1.40
EOF														

S				
R80 137010503FIT 2 36F20				
7000 08002-175 694200 .				
150 0 203 305 457 610 9141524	5.9 0.0	8.0 12.0	18.0 24.0	36.0 60.0
A:\ .FWD				
Rap				
Rap				
menn Object Other				
TODD Standard Setup	×.			
*0000				
S 1.010WB -17.8 26 25D70928		and a raw	925 302 - 27 M2327	
389 361 158 68 37 36 31 24	6178 14.22			1.22 0.96
567 512 226 96 50 46 44 36	9010 20.17	8.88 3.79	1.96 1.83	1.74 1.42
760 637 287 118 55 53 50 37	12069 25.07 1	1.30 4.65	2.17 2.08	1.98 1.47
S 1.020WB -17.8 26 23D70929	-0 79 73			
390 304 126 47 32 25 23 15	6189 11.97	4.98 1.85	1.26 0.97	0.89 0.60
557 511 185 66 45 38 35 24	8859 20.12	7.27 2.60	1.76 1.50	1.36 0.95
	11533 25.78	9.22 3.05	2.11 1.90	1.78 1.30
S 1.030WB -17.8 29 23D70931	-0 84 74			
378 433 148 50 27 27 23 18		5.83 1.97	1.07 1.06	0.90 0.70
568 597 219 73 36 35 37 28			1.43 1.39	
	12026 28.64 1		1.78 1.73	1.90 1.50
· · · · · · · · · · · · · · · · · · ·		1.00 2.09	1.10 1.13	1.90 1.90
S 1.040WB -17.8 29 23D70932				1 1 5 0 00
379 427 176 77 34 33 29 21				1.15 0.82
569 569 239 110 55 46 46 35		황 가격 것 - 것 같은 것 것 ~	2.17 1.82	1.82 1.37
[[[[·[·] 2 · · · · · · · · · · · · · · · · · ·	12069 28.72 1	2.22 5.74	2.86 2.45	2.45 1.85
S 1.050WB -17.8 30 23D70934	-0 85 74			
373 517 175 66 35 33 30 22	5924 20.35	6.89 2.59	1.39 1.30	1.19 0.85
567 644 241 100 53 46 46 34	9002 25.34	9.49 3.94	2.08 1.83	1.79 1.32
756 806 317 136 69 60 62 46	12013 31.74 1	2.47 5.36	2.74 2.36	2.44 1.81
S 1.060WB -17.8 29 23D70935	-0 85 74			
· · · · · · · · · · · · · · · · · · ·	5892 17.45	6.33 2.70	1.66 1.52	1.34 1.02
	8824 25.42		2.19 2.13	1.91 1.41
	11779 31.74 1:		2.93 2.87	2.59 2.00
사람가 많다. 안내라 있는 것은 것을 많은 것 같아요. 그는 것 것 같아요. 것 같아요. 그 것 같아요.		2.30 0.5.	2150 210	
	6038 15.82	6.27 2.93	1.89 1.73	1.38 0.97
			2.76 2.41	2.09 1.54
	8962 22.99			
	11965 29.82 12	2.15 5.85	3.67 3.11	2.85 2.18
S 2.010WB -17.8 29 23D70938				
376 422 149 54 35 33 30 22	5975 16.60		1.39 1.30	1.19 0.87
560 590 215 81 49 47 45 33			1.93 1.85	1.78 1.30
	11934 29.41 11	1.29 4.38	2.50 2.38	2.32 1.74
S 2.020WB -17.8 29 23D70939	-0 85 73			
379 392 164 69 41 38 36 26	6022 15.41 (6.47 2.73	1.61 1.50	1.41 1.01
564 553 238 105 60 59 53 40	8959 21.79	9.37 4.14	2.36 2.31	2.07 1.56
756 717 313 142 78 75 71 54	12005 28.23 12	2.34 5.57	3.08 2.97	2.79 2.11
S 2.030WB -17.8 29 23D70940	-0 84 73			
372 422 191 81 47 44 37 28	5908 16.63	7.54 3.19	1.83 1.73	1.47 1.10
560 605 275 120 68 61 55 42	8891 23.80 10		2.67 2.39	
	11962 30.42 14			2.96 2.25
S 2.040WB -17.8 29 24D70941		4.10 0.00	0.00 0.12	2120 2120
377 392 162 75 44 41 37 26	E001 1E /E /	c > c > o o c	1 74 1 62	1 4 4 1 01
	5991 15.45	0.36 2.90	1.74 1.05	1.44 1.01
566 558 240 114 65 60 55 40	8999 21.97 9	9.44 4.48	2.56 2.36	2.18 1.57
761 720 318 154 85 79 76 55		2.51 6.06	3.36 3.11	2.98 2.15
S 2.050WB -17.8 29 23D70942	-0 84 74	S S S 83	a ang ang ang ang ang ang ang ang ang an	11 10 11 11 11 11 11 11 11 11 11 11 11 1
382 390 143 66 46 41 34 24	6070 15.34 5		1.80 1.61	
568 553 214 102 68 61 52 36	9030 21.76 8			2.03 1.41
763 694 288 138 89 80 71 49	12121 27.34 11	1.34 5.45	3.52 3.14	2.78 1.93
S 2.060WB -17.8 30 23D70943	-0 85 74			
360 529 175 62 43 43 34 26	5725 20.82 6	6.87 2.45	1.69 1.67	1.35 1.01
548 738 254 89 59 58 52 39	8705 29.07 10		2.32 2.28	
	11914 31.48 12			
s 2.070WB -17.8 30 23D70944	-0 85 74		ಕಾಲಕಾರ್ ನ್ಯಾಪ್ಟ್	ಂಗಾನಂಪಂಕರ - ಸ್ಮಾನಂಗಾನ ಲ
	5852 17.50 6	5 19 3 00	1 99 1 78	1.39 0.96
	8859 25.55			
557 649 232 112 73 64 54 37	11041 20.00 10	2.19 4.4U	2.00 2.02	2.86 2.00
752 833 310 149 96 84 73 51	TIA41 25.20 15	2.19 0.8/	3.10 3.31	2.00 2.00

S 3.010WB	-17 8	25 22D71042	-0 76 71			
369 611 136		29 28 21		5.35 1.70	1.28 1.15	1.11 0.82
565 672 200	75 50	45 41 29	8983 26.44	7.88 2.96	1.96 1.77	1.63 1.16
749 878 269			11894 34.57		2.42 2.32	2.14 1.56
	-17.8	23 22D71043	-0 74 71			
380 367 168	63 29	27 27 19	6035 14.46	6.63 2.49	1.16 1.06	1.07 0.76
571 525 235	96 45	41 40 29	9073 20.65	9.25 3.78	1.77 1.60	1.59 1.14
759 664 300			12065 26.15	그는 이 같은 것은 것은 것이 같은 것이 같이 없는 것이 같이 없다.	2.45 2.09	2.16 1.58
	-17.8	37 27D71204	-0 98 80	100 / AND-1		
S 3.030WB 383 332 137	68 44	36 29 20	6078 13.07	5.41 2.69	1.72 1.43	1.15 0.77
		54 45 31	9078 19.58	8.06 4.04	2.55 2.13	1.76 1.22
571 497 205			12092 25.85		3.20 2.78	2.30 1.59
761 657 267		36 26D71205	-0 97 79	10.00 0.00	1966-96 BILLING	
S 3.040WB		33 24 16	6030 16.74	4.98 2.42	1.53 1.31	0.95 0.62
379 425 126		53 44 32	9086 22.80	7.49 3.82	2.59 2.08	1.75 1.27
572 579 190			12156 28.77		3.72 3.07	2.64 1.98
765 731 255	ATTENDED AND A DESCRIPTION OF	36 26071206	-0 97 79	10.01 0.00		
s 3.050WB		33 25 18	6019 15.54	5.76 2.66	1.64 1.32	1.00 0.70
379 395 146		50 40 28	9081 22.04	8.61 3.97	2.49 1.96	1.58 1.11
572 560 219	A CONTRACTOR OF A CONTRACTOR		12100 28.05		3.19 2.53	2.11 1.46
761 712 286		37 26D71207		11.120 0.00	1793.079.00 TO 1993.00	
S 3.060WB		35 27 19	5991 15.79	5.67 2.57	1.66 1.40	1.07 0.76
377 401 144		50 42 28	9034 23.00	8.20 3.73	2.42 1.97	1.65 1.11
569 584 208			12113 29.70		3.06 2.62	2.19 1.52
762 754 272		67 56 39 36 25D71208	-0 97 78	10.70 7100		
s 3.070WB		39 32 22		6.05 2.99	1.86 1.53	1.26 0.88
373 458 154	2.66	58 47 33			2.67 2.28	1.87 1.30
555 659 231			11902 33.09		3.50 3.01	2.52 1.78
749 841 308		26 26D71213	-0 79 80	12.10 0.00	1971 BALLER	
S 4.010WB				8.46 4.04	2.35 1.79	1.37 0.98
379 476 215	Contraction of the second s	70 51 37	8967 24.48		3.55 2.74	2.02 1.45
564 622 298 756 750 374	100 103		12010 29.52		4.85 3.69	2.73 1.95
		27 25D71215	-0 80 77			
S 4.020WB 362 534 260	109 51		5752 21.02	10.22 4.24	2.02 1.72	1.40 0.92
		65 54 36	8736 27.64		3.34 2.56	2.13 1.40
550 702 347 745 840 429			11838 33.07		4.70 3.45	2.81 1.88
		26 25D71217	-0 79 78			
S 4.030WB 378 433 201		37 26 21	6003 17.06	7.92 4.07	2.03 1.44	1.01 0.84
		1921 H H H H H H H H H H H H H H H H	8903 22.76		3.19 2.15	1.54 1.21
560 578 284			12113 28.04		4.35 3.00	2.13 1.68
762 712 363		27 25D71218	-0 81 78			
S 4.040WB		34 25 19	· 전망 영문 바이 같은 "것, 만 = 10년 3일	7.57 3.75	1.97 1.32	0.98 0.74
381 368 192		52 38 28	8967 19.72		3.09 2.06	1.50 1.11
564 501 270	10,000		11989 24.94		4.27 2.94	2.04 1.48
754 634 346	199 109	13 32 30	11202 54:24	10.04	1. 2016 (2.54) (2.55) (2.53) (
EOF						
						5.

1								
R80 137010516F	IT-3 36F20							
7000 08002-175 6								10.0
150 0 203 305 457	610 9141524	5.9 0.0	8.0	12.0	18.0	24.0	36.0	60.0
A:\	. EWD							
RAP-3		9						
*0000								
S 1.010NBTL-17.8	40 29D71123							
392 376 155 67 36	31 25 19	6229 14.81	6.10	2.64	1.40	1.22	0.98	0.76
588 535 224 99 53		9348 21.08	8.80	3.91	2.11	1.77	1.49	1.16
778 701 291 129 71		12359 27.59			2.78	2.27	1.96	1.50
			the second of the		1000000	50 R (05)	12.45.27	
s 1.020NBTL-17.8	40 30D71124			0.00	5 5 5	0.00	0.81	0.60
385 389 139 51 28	24 21 15				1.11	0.96		
574 618 214 73 35	34 31 23				1.37	1.33	1.21	0.91
761 795 280 93 42	41 40 31	12085 31.30	11.02	3.68	1.65	1.61	1.56	1.21
s 1.030NBTL-17.8	40 30D71125	-0 104 87						
	32 25 18	6202 13.94	5 93	2.69	1.56	1.24	0.98	0.70
		9121 20.60	0.74	1 00	2.32		1.49	1.08
	47 38 28	91Z1 ZU.60	8.74	4.00				
760 668 290 136 77	62 50 37	12069 26.32	11.42	5.36	3.02	2.44	1.96	1.44
S 1.040NBTL-17.8	43 31D71126	-0 109 87						
387 412 151 74 45	38 30 22	6146 16.23	5,93	2.91	1.78	1.49	1.16	0.87
574 611 229 111 69		9129 24.06			2,72	2.20	1.81	1.35
	2000 <u>2000</u> 1002	12029 30.56	11 92	5 78	3.57	2.91	2.42	1.81
757 776 303 147 91			the the second second	0.10	5.57	64 9 J (44		ALC: NO DECIDENT
S 1.050NBTL-17.8	42 30D71126		0.00 Million			a		0.00
379 428 169 82 48	39 32 22	6022 16.83		3.22	1.87	1.55	1.26	0.86
572 653 255 124 70	56 48 34	9094 25.69	10.06	4.87	2.74	2.22	1.90	1.33
761 822 333 163 91		12085 32.37	13.10	6.41	3.57	2.85	2.50	1.79
	40 32D71142	-0 104 89						
S 1.060NBTL-17.8			6 00	3 06	1.87	1.49	1.26	0.92
385 385 155 78 47							1.97	1.47
582 611 245 120 71	59 50 37	9253 24.04	9.64	4.12	2.80	2.32		
764 789 322 158 93	77 66 50	12137 31.08	12.69	6.21	3.65	3.03	2.59	1.96
S 1.070NBTL-17.8	38 31D71143	-0 101 88						
	43 34 25		6.15	3.06	1.94	1.70	1.33	0.96
				4.62	2.95	2.50	2.05	1.46
	63 52 37				3.96	3.30	2.78	2.00
756 853 311 158 100		12013 33.59	12.23	6,22	2.20	5.30	2.10	2.00
S 2.010NBTL-17.8	46 31D71149	-0 114 87				15. C.115#	2211 (2221)	1211/22/12
371 405 130 61 43	37 30 19	5900 15.94	5.12	2.40	1.70	1.45	1.20	0.76
567 618 207 96 65		9014 24.34	8.14	3.78	2.54	2.27	1.86	1.35
		11994 31.17		5.04	3.38	2.96	2.48	1.76
755 792 278 128 86		-0 109 88			- 25,000,000,000,000	7798002104324		
S 2.020NBTL-17.8	43 31D71153			0.07	1 00	1.57	1.30	0.95
372 395 146 68 46				2.67	1.82			
560 588 229 104 70	60 51 38			4.11	2.74	2.37	2.00	1.48
750 750 304 140 92	81 67 49	11918 29.52	11.99	5.50	3.62	3.18	2.64	1.94
S 2.030NBTL-17.8	43 32D71203	-0 109 89						
377 431 164 84 56			6.46	3.29	2.20	1.89	1.48	1.11
				5.09	3.42		2.28	1.69
	72 58 43			6.71	4.50	3.78	3.00	2.25
768 792 319 170 114		12208 31.17	12.30	0.11	1.00	3.70	2.00	
S 2.040NBTL-17.8	42 33D71205	-0 107 91					2.22	
381 390 172 87 54	47 38 27	6051 15.35	6.78	3.43	2.14	1.87	1.50	1.06
580 584 259 134 83	70 57 40	9216 22.98	10.20	5.26	3.28	2.75	2.26	1.59
772 743 336 175 111	03 77 54			6.90	4.39	3.67	3.02	2.13
115 143 330 T13 TTT	15 200712005	0 113 05		805.5	NSA-199			
S 2.050NBTL-17.8	45 30D/1205	-0 113 85	5 5 5	2 04	2 00	1 77	1.35	0 94
389 323 141 77 51	45 34 24	6181 12.71	5.56	3.04	2.00	1.11	1.00	1.10
585 484 213 119 78	69 52 36	9293 19.06	8.38	4.67	3.06	2.70	2.00	1.92
769 632 280 158 104	89 70 48	12216 24.88	11.03	6.20	4.09	3.49	2.75	1.91
S 2.060NBTL-17.8								
2 2.000MDIT-11.0	44 34 24		5 35	2.91	1.96	1.72	1.32	0.96
369 421 136 74 50		9110 23.76	0.00	1 61	3 11	2 67		1.52
573 604 221 118 79		9110 23.76	0.00	4.04	3.11	2.01	0.00	
766 764 298 159 104		12169 30.08		6.25	4.09	3.52	2.80	2.04
S 2.070NBTL-17.8	45 30D71210	-0 113 86						-
364 487 145 73 50	45 33 25	5789 19.17	5.72	2.89	1.96	1.78	1.32	0.97
566 727 238 117 77	67 55 39	8994 28.62	9.37	4.60	3.02	2.63	2.17	1.52
500 /2/ 238 11/ //		12042 35.33	12 69	6 24	3 99		2.89	
758 897 322 159 101	88 /3 32	12042 33.33	12.00	4.24	0000	19.19.19.19. 19.19.19.19.	(m. 7.7)	2000 A.M.
S 3.010NBTL-17.8	48 29D71217	-0 119 85				1 00	0 07	0.67
355 492 111 62 40	32 25 17	5646 19.36	4.38	2.44	1.59	1.20	0.97	0.67
CONTRACTOR AND								

554 729 187 101 64 51 40 28 8803 28.71 7.37 3.98 2.52 2.02 1.56 1.09 748 903 260 137 85 67 53 38 11878 35.54 10.25 5.38 3.35 2.64 2.11 1.48 S 3.020NBTL-17.8 43 32D71232 -0 110 89 384 368 154 70 39 32 25 18 6107 14.49 6.07 2.75 1.55 1.27 0.98 0.70 569 547 229 109 63 49 40 28 9041 21.52 9.00 4.30 2.46 1.94 1.57 1.11 753 682 292 144 83 65 54 38 11965 26.84 11.49 5.66 3.27 2.57 2.14 1.48 3.030NBTL-17.8 43 33D71232 -0 109 92 S 5.84 2.83 1.57 1.52 0.95 0.70 375 391 148 72 40 38 24 18 5963 15.41 574 568 224 110 66 55 42 29 9126 22.35 8.82 4.35 2.61 2.18 1.67 1.15 760 720 289 143 88 70 56 38 12073 28.35 11.37 5.65 3.46 2.77 2.22 1.52 S 3.040NBTL-17.8 49 32D71233 -0 120 90 384 359 130 65 42 35 25 16 6107 14.12 5.11 2.58 1.65 1.36 0.99 0.63 577 512 197 102 65 52 40 27 9169 20.16 7.77 4.02 2.58 2.06 1.57 1.07 770 653 261 138 86 70 54 36 12243 25.69 10.27 5.41 3.40 2.75 2.11 1.42 3.050NBTL-17.8 49 31D71234 -0 120 88 S 371 405 144 71 45 35 25 17 5887 15.93 5.67 2.79 1.77 1.40 1.00 0.67 574 589 221 111 70 55 41 27 9121 23.17 8.71 4.36 2.74 2.17 1.60 1.07 764 743 289 146 91 73 54 37 12145 29.27 11.38 5.75 3.60 2.86 2.13 1.44 S 3.060NBTL-17.8 49 31D71235 -0 121 87 375 388 149 72 46 36 27 18 5956 15.30 5.87 2.83 1.80 1.41 1.04 0.69 576 569 226 111 71 56 42 28 9150 22.42 8.89 4.36 2.78 2.21 1.65 1.12 765 730 293 144 92 73 56 38 12156 28.72 11.53 5.69 3.62 2.88 2.19 1.49 3.070NBTL-17.8 49 31D71236 -0 120 88 S 363 463 159 70 43 37 27 19 5776 18.23 6.25 2.74 1.68 1.44 1.06 0.76 565 712 256 111 67 55 44 31 8983 28.04 10.07 4.39 2.65 2.16 1.74 1.24 751 882 335 148 88 72 59 43 11938 34.70 13.19 5.83 3.45 2.84 2.31 1.68 S 4.010NBTL-17.8 30 36D71348 -0 85 97 367 395 150 67 43 38 31 23 5824 15.54 5.89 2.64 1.68 1.49 1.20 0.90 566 559 240 112 67 59 48 35 8991 22.01 9.43 4.40 2.62 2.33 1.90 1.36 748 653 305 150 88 78 65 47 11891 25.71 12.00 5.91 3.48 3.07 2.58 1.85 4.020NBTL-17.8 35 33D71352 -0 95 92 377 274 122 71 48 38 31 20 5995 10.80 4.81 2.80 1.90 1.50 1.22 0.79 576 399 195 119 81 64 49 33 9150 15.69 7.69 4.67 3.17 2.51 1.93 1.31 762 490 253 157 107 86 66 44 12108 19.30 9.95 6.19 4.22 3.37 2.58 1.72 5 4.030NBTL-17.8 32 35D71358 -0 89 95 377 291 133 76 53 49 38 29 5995 11.44 5.25 2.99 2.07 1.91 1.51 1.15 573 415 200 111 71 62 47 32 9105 16.34 7.89 4.36 2.80 2.43 1.83 1.27 767 513 260 149 95 79 62 42 12192 20.19 10.23 5.85 3.72 3.10 2.45 1.64 S 4.040NBTL-17.8 32 36D71411 -0 89 97 379 296 118 63 42 34 26 19 6030 11.64 4.65 2.47 1.65 1.34 1.02 0.74
 582
 417
 186
 104
 68
 55
 42
 30
 9240
 16.43
 7.32
 4.09
 2.69
 2.17
 1.65
 1.19

 778
 511
 242
 142
 94
 75
 57
 41
 12367
 20.11
 9.53
 5.59
 3.69
 2.96
 2.25
 1.60
 EOF

RAP			••.		
* ·		11 5	·	I41025112 Heights	
	0100WB		27	25 21 6728 15 28 5 80 2.82 1.78 1.47 0.95	
423	388 14	1 12 45	51	38 30 9888 22.36 8.08 4.20 2.72 2.25 1.49	1 1
622	568 205	107 65	57	38 30 9868 22.36 0.00 1.20 3.28 2.66 1.94	1
784	698 275	133 83	68	49 41 12464 27.48 10.81 5.22 3.28 2.66 1.94	
9 1	0200WB	44.5		I4102/II2 Reights	
384	445 169	60 36	29	24 19 6096 17.53 6.63 2.37 1.42 1.15 0.95	1
507	668 250	92 54		35 27 9496 26.31 9.84 3.63 2.13 1.64 1.36	1
776	808 306	114 63	51	43 34 11696 31.81 12.04 4.49 2.49 2.00 1.09	
				Heights	
5 1.	0300WB		34	20 22 5808 17 11 6.15 2.57 1.58 1.35 1.12	0
366	435 150				
572	615 -228	98.59	54	ET 13 12184 31 98 11,86 5.18 3.04 4.30 4.43	
767	812 301			HATODOTTO HATOTTS	
	0400WB	44.5		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1
392	355 176	92 58	46	45 34 9192 20.57 9.84 5.06 3.04 2.29 1.78 5 34 9192 20.57 9.84 5.06 3.04 2.29 1.78	1
578	522 250	129 77	58	45 34 9192 20.37 9.84 5.00 5.01 2.23 2.64	2
766	714 343	177 105	82		
S 1	0500WB	44.5		I41031112 Heights	
			42	I41031112 Heights 34 23 6112 17.07 7.29 3.39 2.17 1.64 1.32 50 34 9024 25 11 10.85 5.06 3.12 2.41 1.98	1
569	638 276	129 79	61	50 34 9024 25.11 10.85 5.06 3.12 2.41 1.98 50 34 9024 25.11 10.85 5.06 3.12 2.41 1.98	4
763	877 364	173 104	80		
5 1.	DOUUWB		1.1		1
579	510 240	127 80	04	CO CA 1000A 20 (12 12 83 8.// 4.13 3.31 4.92	-
769	712 326	172 105	84	68 54 12224 20:02 12:00 0111 141034112 Heights	
s 1.	0700WB	44.5			
406	419 179	91 59	48	141034112 Heights 1.41034112 38 27 6456 16.49 7.03 3.59 2.33 1.88 1.49 54 38 9192 23.15 9.97 5.14 3.36 2.70 2.11 52 53 12192 31 06 13 31 6.98 4.46 3.64 2.89	1
579	588 253	131 85	69	54 38 9192 23.15 9.37 5.11 5.86 3.64 2.89	2
767	789 338	177 113	92	73 52 12192 31.06 13.31 6.98 4.46 3.64 2.89	
5 2.	0100WB	44.5		13 52 12152 51.00 15.51 141036112 Heights	0
			35	141036112 39 22 7088 16.15 9.23 3.47 1.86 1.39 1.53	1
610	501 228	102 68	56	45 31 9688 23.40 8.96 4.00 2.69 2.21 1.78 5 45 12104 30 89 11 34 5.43 3.59 2.95 2.31	1
010	705 288	138 91	75	45 31 9688 23.40 5.43 3.59 2.95 2.31 59 45 12104 30.89 11.34 5.43 3.59 2.95 2.31	+
701	0200WB	44.5		I41036112 Heights	••••
				TA 12 0000 22 02 8 00 4 65 3.32 2.00 4.11	
566	559 203	118 84	00	54 41 9000 22.02 11.51 6.28 4.42 3.64 2.89 73 56 11992 29.69 11.51 6.28 4.42 3.64 2.89	2
755	754 292	160 112	94	73 56 11992 29.89 11.51 0.20 1.01 141038112 Heights	
S 2.1	0300WB	44.5			-
415 3	390 173	93 64	53	42 32 6600 15.36 5.81 5.67 3.55 2.90 2.36 60 45 9296 22.02 9.80 5.26 3.55 2.90 2.36 7.14 4.78 3.89 3.18	1
585 3	559 249	134 90	74	60 45 9296 22.02 9.80 9.20 9.80 8.20 9.80 3.18 81 61 12344 30.02 12.83 7.14 4.78 3.89 3.18	2
777 '	762 326	181 121	99	81 61 12344 30.02 12.83 7.14 1.00 0.00 141051112 Heights	
5 2.0	1400WB	44.5		I41051112 Relignus	1
401 4	483 174	85 56	48	141051112 Heights 3.35 2.21 1.88 1.61 41 30 6376 19.03 6.85 3.35 2.21 1.88 1.61	1
573	646 247	125 81			
767	327 333	171 110	91		_
				Helders	
121	318 143				
401 -	165 102	117 83	69	38 28 6840 12.33 7.60 4.61 3.28 2.70 2.07 52 38 9288 18.32 7.60 4.61 3.28 2.70 2.07	1
202 4	100 190	155 111	91	52 38 9288 18.32 7.60 1.01 70 52 12248 24.81 10.28 6.12 4.38 3.60 2.77	2
//1	102 000	100 TTT			
				20 28 6784 14.86 6.37 3.39 2.29 1.88 1.33	-
427 3	378 162	86 58	40	39 28 6/84 14.86 9.57 4.81 3.16 2.62 2.15 55 40 9160 22.27 9.09 4.81 3.16 2.62 2.15	1
577 5	566 231			55 40 5100 22.27 5.41 4.19 3.48 2.85	2
762	742 299	163 106			
5 2.0	0700WB	44.5		141053112 Reights 39 29 6600 14.78 7.60 3.26 2.17 1.92 1.53	1
415 3	375 193	83 55	49	39 29 6600 14.78 7.60 3.20 2.17 1.52 2.11	1
582 5	44 249	117 78	67		
775	735 326	155 103	88	54 40 9258 21.40 9.80 4.81 71 53 12320 28.94 12.83 6.12 4.07 3.48 2.81	-
0 3 1	100WB	44.5			
3 3.0	120 146	74 47	38	I41059112 Heights 29 21 6488 16.86 5.76 2.90 1.86 1.51 1.16 1 20 8960 23 77 8 13 4.12 2.65 2.09 1.61	1
	140 140	12 2/		41 29 8960 23.77 8.13 4.12 2.65 2.09 1.61	-
408 4	200 602	105 67	2.1		
564 6	504 206	105 67	72	29 21 6488 16.86 5.76 2.90 1.86 1.81 41 29 8960 23.77 8.13 4.12 2.65 2.09 1.61 55 39 11936 31.68 10.72 5.59 3.51 2.82 2.15 Heights	1.

3.02						~	0.00	1 60	1 13	1 16	0 73	
	8 73 41	36	29 19	6488	17.11 6	.24	2.86	1.04	1.40	1.10	1 14	
574 611 200	6 106 62	52	41 29									
766 809 29	5 142 81	70	54 39	121/6	31.85 11		3.39	3.20	4.14	· · · · · · · · · · · · · · · · · · ·	7.00	
5 3.0300WB	44.5		I41101	112	Heig	ghts						
449 332 179		27	28 21	7128	13.07 7	.03	2.90	1.86	1.4/	1.12	0.81	
607 476 251		51	40 20	9648	18.74 9.	.89	4.08	2.53	2.00	1.57	1.14	
766 654 326			52 38	12168	25.73 12.	.83	5.43	3.30	2.04	2.01	7.27	
S 3.0400WB	44.5		TA1101	112	Heig	ghts.						
			00 10	7722	12.57 5.	.98	3.06	1.90	1.39	0.91	0.69	
455 319 152 599 471 219		17 73	13 29	9520	78 53 8.	61	4.49	2.61	2.09	1.69	1.10	
765 650 283	148 88	70	56 38	12160	25 BL 11.		3.03	1.2/	4 . 1 .	4	1 · · · +	
s 3.0500WB		10	TA1102	112	Heic	rhts						
423 295 153			00 01	6720	11 62 6.	02	3.18	1.93	1.47	1.12	0.81	
423 295 133		T 4	41 20	0400	17 07 8.	92	4.65	2.72	2.13	1.61	1.14	
592 434 227		71	55 39	12496	23.48 11.	95	6.16	3.63	2.78	2.15	1.51	
786 596 304	44.5	11	TA1102	112	Heid	Thts.						
s 3.0600WB		20	20 21	CECO	14 20 5	45	2.86	1.97	1.55	1.10	0.01	
413 361 138			12 20	0240	20 48 7	97	4.16	2.76	2.21	1.69	1.10	
582 520 201			F7 40	12236	27 48 10	63	5.59	3.0/	4.90	4.40	1.33	
776 698 270	142 93	14	-1110A	110	Hein	rhts						
S 3.0700WB	44.5	4	21 22	GADE	13 05 5	GR .	5.2h	1.11	1.00	1 + 60 12	0.00	
409 354 152	83, 55	43	45 33	0194	20 36 9	09	4.77	3.08	2.31	1.10	1.20	
578 517 231	121 78	0.0	FD 40	10004	27 52 12	75	6 44	4 11	3.13	4.44	1.0/	
769 699 314	700 701	80			TT o n of	and the second						
S 4.0100WB			141120	L12	24.86 6.	33	1 96	1 74	1.60	1.24	0.94	
387 631 161		41	31 24	6134	24.86 9.	22	1 08	3 16	2 58	1.94	1.42	
578 631 235	104 80	65	49 36	9184	24.00 9.	20	5 75	4 54	3 64	2.89	1.87	
756 731 312	146 115	92	73 48	12008	28.77 12.	30	3.14	4.04	2.01	2.05		
5 4.0200WB	44.5			112	Heig	nts		1 70	1 20	1 16	0.81	
410 383 154	73 43	35	29 21	6512	15.07 6.	06	2.00	1.70	2 21	1 74	1.30	
608 509 219	113 71	56	44 33	9656	20.03 8.	61	4.43	3.79	2 05	2.27	1.71	
789 681 293	153 96	75	58 43	12528	26.81 11.	56	6.04	3.19	4.95	4.41		
5 4.0300WB	44.5		1411251	112	Heig	nts				0.00	0 73	
3951092 319	79 23	22	25 19	6272	43.01 12.	57	3.10	0.91	0.80	1 61	1.22	
597 642 288	107 49	44	41 31	9496	25.27 11.	34	4.20	1.93	1.12	2.15	1.63	
788 674 344	145 72	C 0	EE 41	12520	26 52 13	53	5.71	2.84	2.31	6.13	7.00	
5 4.0400WB	44.5.		I411261	10	Heid	hts					0 77	
411 463 270		OF	25 10	6526	18 24 10 1	63	4.41	1.90	0.98	0.99	0.15	
604 551 301		45	20 20	0502	21 69 11 1	86	5.39	2.76	1.76	1.33	7.74	
768 743 355		61	54 39	12200	29.27 13.5	97	6.81	3.79	2.41	2.11	1.55	
ROF												

EOF

*0000	rd Setup	<i>QLF</i>			2 DF	3 DFY	PFS	t dr	: DF	
				c. c.					0.75	
410 577 154	66 41 34 27 98 58 49 39	19 6515	22.70	0.05	2.61	1.63			0.75	
591 772 231	27 72 63 50	29 9391	36.00	11 79	5 00	2.85				
/b/ 914 299 1	17.8 49 32D71	458 -0 13	0 90		5.00	2.00	4.20	1.50	41.10	
S 1.020SBTL- 381 394 157		16 6054	15.50	6.17	2.19	1.30	1.09	0.83	0.62	
569 596 234		23 9050	23.46	9.22					0.89	
773 793 317 10	08 56 49 44	31 12280	31.24	12.48	4.26	2.19	1.93	1.72	1.21	
S 1.030SBTL-	17.8 51 32D71	459 -0 12	4 89		V an annu					
378 401 -178	35 40 33 22	16 6003	15.78	7.02	3.33	1.59	1.30	0.87	0.65	
565 588 256 12	24 62 48 36	27 8970	23.16	10.10	4.89	2.44	1.88		1.07	
772 777 335 10	51 81 65 48	37 12264		13.17	6.34	3.17	2.54	1.90	1.44	
S 1.040SBTL-1	L7.8 52 32D71	500 -0 12				-	1 20			
363 555 147 0	53 41 33 29	20 5773	21.86	5.80	2.46	1.62	1.30	1.15	0.81	
558 770 232 10	02 61 52 44	33 8872	30.32	9.13	4.01	2.38	2.05	1.75		
764 971 318 14	10 81 69 61	45 1Z13/		14.04	0.49	2.13	2.72	2.39	1.77	
S 1.050SBTL-1	.7.8 51 32D71. 14 52 39 30	501 -0 12 21 5887	15 96	6 30	3 30	2.06	1.54	1,18	0.83	
3/1 405 160 8	8 78 58 46	33 8903	24.81	9,93	5.06	3.07	2.29	1.82	1.30	
766 848 349 17	5 104 78 63	45 12172	33.39	13.76	6.91	4.09	3.09	2.46	1.77	
s 1.060SBTL-1	7.8 51 32D71	502 -0 12	3 89							
361 414 168 8	4 49 39 32	24 5733	16.31	6.61	3.30			1.25	0.95	
553 656 259 12	8 76 61 49	35 8779	25.84	10.20	5.04	2.99	2.39	1.92	1.39	
763 856 359 17	7 103 82 67	49 12116	33.69	14.12	6.95	4.06	3.24	2.65	1.95	
s 1.070SBTL-1	7.8 51 32D715	i03 -0 12·	4 89					an nanar		
360 542 168 8	2 53 43 34	24 5713	21.33	6.63	3.23	2.08		1.33		
551 754 259 12	9 81 63 52	38 8748 2	29.70	10.21	5.06	3.19	2.47		1.50	
756 956 351 17	6 111 83 73	55 12013	37.65	13.82	6.93	4.38	3.27	2.85	2.10	
S 2.010SBTL-1	7.8 53 32D/15		90	E 20	2 10	1 60	1 38	1 15	0.78	
361 424 132 6	3 43 35 29	32 8879 2	15 02	9.20	3 91	2 56	2.06	1.80		
759 877 302 13	0 65 52 46	44 12061 3	4 52	11.90	5.44	3.40	2.74		1.72	
5 2.020SBTL-1	7.8 49 32D715	07 -0 120	90							
364 396 155 8	3 55 45 33	24 5789 1		6.10	3.28	2.18	1.76	1.32	0.94	
558 600 239 125	9 85 69 53	38 8864 2	3.61	9.42	5.09	3.34	2.74	2.07	1.49	
767 805 326 176	5 115 95 72	53 12180 3	1.68 1	12.83	6.92	4.54	3.74	2.85	2.07	
S 2.030SBTL-1	7.8 49 310715	09 -0 121	89							
372 303 149 86	5 57 47 37	27 5903 1	1.94	5.85	3.37	2.26			1.04	
567 500 236 133		41 9007 1			5.22	3.48 2			1.61	
774 696 326 183		57 12296 2		.2.83	7.19	4.71	3.90	3.05	2.25	
S 2.040SBTL-17	7.8 46 34D715	27 -0 116	93	5 70	2 00	0 10 1	01	1.46	1.03	
368 402 145 78	53 46 37	26 5844 1 40 9050 2	1 10	9.05	3.08					
569 614 227 121 772 811 310 164	. 81 69 57	40 9030 2 55 12264 3	1 02 1	2 19	6.44	4.30 3	. 62	3.04	2.16.	
		28 -0 117	91	5 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 * 4 4				10000000000000000000000000000000000000	
S 2.050SBTL-17 374 273 138 77	· 52 44 31	22 5940 1	0.74	5.43	3.04	2.06 1	. 72	1.23	0.87	
56A 434 214 120	82 67 50 3	35 8967 1	7.10	8.43	4.72	3.21 2	. 65	1.95	1.37	
770 606 292 163	111 92 69 4	48 12243 2	3.87 1	1.51	6.43	4.38 3	. 62	2.72	1.89	
a 2 0606887-17	9 50 320715	-0.122	90							
362 343 143 81	52 43 34 2	24 5752 1	3.49	5.63	3.17	2.06 1	. 69	1.34	0.94	
EEO E20 222 123	90 64 53 7	37 8883 21	0.78	8.77	4.85	3-14 4	. 52	2.01	T * 40	
765 717 304 168	108 87 72 5	51 12153 21	3.21 1	1.96	6.60	4.24 3	.44	2.82	2.01	
C 2 0705BTT-17	8 49 3207152	-0 121	90							
262 270 154 79	51 44 34 3	3 5749 14	1.55	6.06	3.06	T.93 1	. /5	2 11	1 46	
560 589 248 124	80 67 54 3	0 12164 2	1.20	3.70	4.00	A 20 7	. 63	2.89	1.98	
766 795 344 171	TOR -68- 13 2	7 _0 123	87	2.33	0.13	3.44 0	4	2.02		
s 3.010SBTL-17 350 464 147 67	.0 21 31D/101	6 5562 10	26	5 77	2.64	1.48 -1	. 25	0.95 0	0.64	
F	EO 40 27 2	6 9652 27	1 06	8 01	4 02	2 31 1	.89	1.40	1.01	
754 899 305 138	80 65 51 3	5 11981 35	.40 1	1.99	5.42	3.15 2	.56	2.00	1.39	
104 022 000 100										

S	3.02	OSBI	L-17	.8	47	35D7	1611	-0 1	16 9	4							
36	0 611	151	64	36	5 32	2 24	18	5717	24.0	5. 5.9	4 2.	52	1.43	1	.27	.0.95	071
55	0 816	230	99			3 40				4 9.0						. 1.57	
75.	51008	313	137	78	65	53	38	11997	39.6	8 12.3	3 5.	.41	3.06	2	.58	2.11	1.52
S	3.03	OSBT	L-17	.8	45	33D7	1612	-0 1	13 9	1 -							
36	3 322	150	71	40	34	24	16	5844	12.6	5.93	3 2.	78	1.58	1,	.32	0.95	0.64
56	1 507	227	106	66	50	39	26	8962	19.9	4 8.94					.96		1.02
770	705	310	145	88	67	53	36	12228	27.7	5 12.23	5.	69	3.48	2.	. 62	2.10	1.42
S	3.04	OSBT	L-17	. 8	44	32D7		-0 1				с <i>с</i>	15				
360	347	134	61	38	36	24	16	5725	13.6	5 5.28	2.	41	1.50	1.	.40	0.94	0.65
555	523	207	96	59	52	38				8.15			2.31		04		1.03
765	698	279	131	80						11.00	5.	17	3.16	2.	63	2.06	1.41
S	3.05	OSBT:	L-17	. 8	47	32D7		-0 1									
374	314	131	68	42	32	24				5.16			1.66	1.	26	0.93	0.62
570	486	206	106	63	50	38	26	9062	19.14	8.13			2.50	2000	98		1.03
778	667	282	145	86	68	52	36	12363	26.28	11.09	5.	69	3.40	2.	68	2.05	1.41
								-0 12	23 89								
363	311	126	64	41	33	24				4.98				1.			
566	504	204	103		51					8.04							1.02
	687					53				11.06	5.5	55	3.50	2.	71	2.09	1.39
S	3.070	SBTI	-17.					-0 12							1.442	1/20 1/2010/	020 0210
	379				32					5.55			1.55				0.64
554	603	234	109	64	48	39	27			9.21			2.54			1.53	1.06
765	809	324	149	84	63					12.76	5,8	36	3.30	2.	48	2.07	1.45
S	4.010	SETI	-17.			31071		-0 9		< 8 2 32			10000	122.5		521 55/62	101 ISIN
377	226	112				29	20000			4.43			1.55	1.			0.86
	337				54	46				6.94				2.:		1.82	1.35
	432							12275		9.17	5.4	6	3.52	2.9	92	2.52	1.84
S						31071		-0 9						2		a (22)	
	249				35	28				3.82	2.0			1.4			0.78
12 Peter (12 Peter)	389	A CONTRACTOR OF		62	55						3.3					1.78	1.27
	468				76			L2161		8.41	4.7	1 .	3.44	3.0	10	2.47	1.76
S ·						2D71		-0 9							-	1 00	0 75
	235				30					5.09				1.1			0.75
570	367	212	108	59		43				8.36							1.20
768	451	273	149.	84	65	58	42 1	.2204	17.76	10.74	5.8	5 .	3.31	2.5	5	2.30	1.66
5 4								-0 8		100					-	1 00	0.775
	235		100 C	39				6181			2.5		1.55			1.09	
	359 .				44						4.0		2.36			1.68	
774	457 3	272	140	85	61	60	42 1	2304	17.97	10.69	5.5	6	3.36	2.4	1	2.35	1.6/
EOF																	

Appendix C

6000-lbf and 12000-lbf

ISM vs. Time Plots

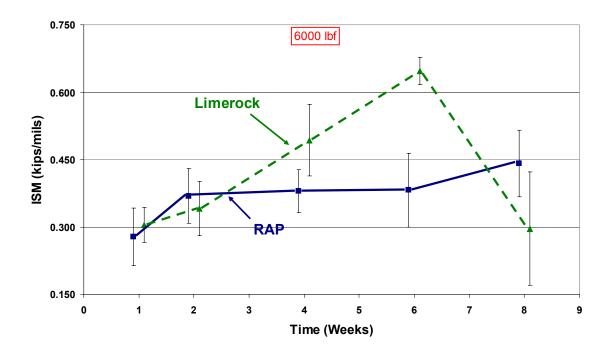


Figure B-1 ISM vs. Time for RAP and Limerock (6000-lbf)

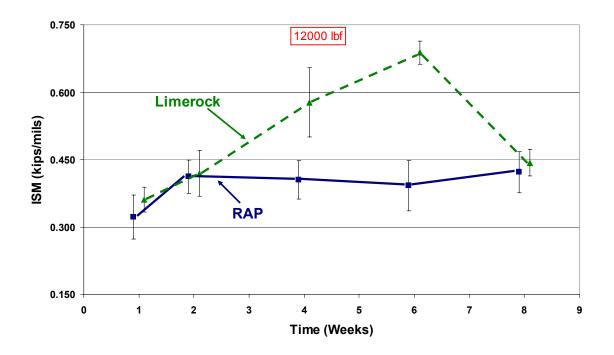


Figure B-2 ISM vs. Time for RAP and Limerock (12000-lbf)

Appendix D

Clegg Impact Test Data

WEEK 1											
Test Site	Material			t Values (N	√)	Max	Max (Avg)				
	Matonal	1	2	3	4		max (/ (vg)				
1		16	21	21	22	22					
1	RAP	16	22	23	24	24	23				
1		14	18	22	21	22					
2		21	30	29	29	30					
2	RAP	18	22	24	24	24	26				
2		16	21	22	24	24					
3		21	26	29	27	29					
3	RAP	17	23	25	27	27	27				
3		19	23	25	24	25					
4		15	21	25	26	26					
4	RAP	10	14	15	16	16	22				
4		13	18	21	23	23					
5		23	31	33	32	33					
5	RAP	18	24	26	26	26	30				
5			24	25	26	26					
6		23	30	28	32	32					
6	RAP	21	28	31	29	31	30				
6		19	22	26	26	26					
7		21	26	28	28	28					
7	RAP	22	26	29	30	30	28				
7		21	24	25	27	27					
8		21	26	25	28	28					
8	RAP	14	21	22	23	23	26				
8		14	22	25	26	26					
9		25	35	37	38	38					
9	Limerock	13	22	27	29	29	35				
9		17	27	31	37	37					
10		29	38	41	42	42					
10	Limerock	25	33	36	39	39	39				
10		22	30	36	36	36					
11		25	32	35	38	38					
11	Limerock	19	29	31	35	35	36				
11		22	32	33	35	35					

			WEE				
Test Site	Material	C	legg Impac	t Values (I	V)	Max	Max (Avg)
Test one	Wateria	1	2	3	4		Max (Avg)
1		19	19	20	21	21	
1	RAP	27	32	34	33	34	29
1		22	29	33	31	33	
2		24	29	30	29	30	
2	RAP	20	23	25	25	25	29
2		24	28	30	31	31	
3		21	26	28	29	29	
3	RAP	18	25	24	26	26	28
3		20	28	27	30	30	
4		17	21	23	23	23	
4	RAP	18	25	25	27	27	24
4		16	22	22	23	23	
5		22	25	27	26	27	
5	RAP	18	23	25	24	25	29
5		17	20	21	23	23	
6		23	28	28	31	31	
6	RAP	19	23	25	26	26	29
6		21	25	25	30	30	
7		19	24	25	26	26	
7	RAP	20	27	28	29	29	26
7		17	21	23	22	23	
8		16	19	21	21	21	
8	RAP	18	23	23	23	23	22
8		16	20	21	21	21	
9		27	33	34	35	35	
9	Limerock	14	21	24	27	27	32
9		19	28	31	33	33	
10		20	30	32	35	35	
10	Limerock	24	31	34	38	38	38
10		20	34	36	40	40	
11		18	26	29	32	32	
11	Limerock	18	25	29	30	30	30
11		17	24	26	27	27	

			WEE				
Test Site	Material	0		t Values (I	V)	Max	Max (Avg)
	Matonal	1	2	3	4		(indix (i rug)
1		27	36	42	44	44	
1	RAP	24	30	34	32	34	36
1		22	26	28	29	29	
2		30	35	40	43	43	
2	RAP	21	28	31	30	31	37
2		27	34	34	37	37	
3		25	30	31	30	31	
3	RAP	21	30	35	36	36	35
3		25	32	34	37	37	
4		22	27	28	28	28	
4	RAP	21	28	29	29	29	29
4		23	28	30	30	30	
5		30	35	36	37	37	
5	RAP	23	28	29	30	30	33
5		26	33	37	35	37	
6		24	30	33	36	36	
6	RAP	27	31	32	32	32	33
6		24	30	32	32	32	
7		25	28	30	31	31	
7	RAP	27	28	29	31	31	31
7		25	29	30	31	31	
8		23	26	27	28	28	
8	RAP	24	25	32	31	32	33
8		30	29	38	35	38	
9		26	32	35	37	37	
9	Limerock	24	34	38	40	40	39
9		23	32	36	40	40	
10		30	39	42	42	42	
10	Limerock	33	31	35	37	37	40
10		30	36	38	40	40	
11		23	28	31	33	33	
11	Limerock	20	29	33	34	34	36
11		26	36	39	41	41	

			WEE				
Test Site	Material	0		t Values (IV	/)	Max	Max (Avg)
	Material	1	2	3	4		
1		34	40	43	42	43	
1	RAP	31	41	49	45	49	45
1		33	40	43	32	43	
2		26	31	31	37	37	
2	RAP	26	34	40	33	40	39
2		24	30	31	39	39	
3		27	37	39	27	39	
3	RAP	20	24	25	41	41	39
3		28	36	38	34	38	
4		27	36	36	30	36	
4	RAP	21	30	33	33	33	34
4		24	31	33	33	33	
5		29	33	33	31	33	
5	RAP	28	28	29	29	29	39
5		25	28	30	39	39	
6		31	38	41	33	41	
6	RAP	28	30	31	38	38	39
6		32	37	38	28	38	
7		23	28	29	35	35	
7	RAP	29	30	30	26	30	30
7		19	24	25		25	
8		23	28	32	31	32	
8	RAP	23	29	34	33	34	35
8		28	36	35	38	38	
9		18	27	30	32	32	
9	Limerock	23	35	40	42	42	42
9		33	39	43	53	53	
10		22	26	27	28	28	
10	Limerock	23	32	35	37	37	35
10		27	37	38	41	41	
11		25	29	35	37	37	
11	Limerock	23	32	38	40	40	40
11		27	37	42	42	42	

				EK 8			
Test Site	Material		Clegg Impac		V)	Max	Max (Avg)
	Matonai	1	2	3	4		(indix (i rug)
1		31	43	40	44	44	
1	RAP	38	47	48	49	49	45
1		35	39	40	41	41	
2		39	52	52	55	55	
2	RAP	28	33	35	36	36	44
2		35	38	42	40	42	
3		33	43	46	54	54	
3	RAP	31	41	41	42	42	47
3		35	45	41	46	46	
4		25	33	32	33	33	
4	RAP	27	31	32	32	32	34
4		31	37	38	33	38	
5		30	36	40	39	40	
5	RAP	25	31	37	34	37	42
5		21	27	28	30	30	
6		36	40	40	45	45	
6	RAP	31	35	39	38	39	42
6			37	38	41	41	
7		23	33	35	36	36	
7	RAP	27	28	28	28	28	32
7		28	31	32	31	32	
8		33	38	43	43	43	
8	RAP	24	30	33	33	33	37
8		22	27	34	35	35	_
9		27	33	39	41	41	
9	Limerock	27	37	38	40	40	38
9		20	29	34	34	34	
10		20	26	29	30	30	
10	Limerock	25	30		37	37	32
10		20	26	28	29	29	
11		26	36	42	45	45	
11	Limerock	19	23	27	29	29	34
11		18	24	27	28	28	

Appendix E

Soil Stiffness Gauge Data

WEEK 1						
Test Site	Material	S/D	SSG (Mn/m)	Average	Std. Deviation	
1		2.86	21.04			
1	RAP	2.42	19.01	19.28	1.64	
1		2.19	17.80			
2		2.36	17.19			
2	RAP	2.28	15.03	16.15	1.08	
2		2.68	16.24			
3		2.11	17.34			
3	RAP	2.91	15.45	17.18	1.66	
3		2.47	18.76			
4		2.62	19.73			
4	RAP	1.84	15.23	17.51	2.25	
4		2.40	17.58			
5		2.56	19.19			
5	RAP	2.26	17.65	18.76	0.97	
5		2.48	19.43			
6		2.12	17.06			
6	RAP	2.32	16.03	16.71	0.59	
6		2.25	17.04			
7		2.52	17.45			
7	RAP	2.39	18.54	18.19	0.64	
7		2.37	18.59			
8		2.36	16.19			
8	RAP	2.81	21.07	17.64	2.98	
8		1.92	15.67			
9		3.92	27.84			
9	Limerock	2.79	22.30	25.01	2.77	
9		3.46	24.90			
10		2.56	16.73			
10	Limerock	3.56	22.69	20.51	3.29	
10		2.55	22.12			
11		3.00	23.56			
11	Limerock	3.04	24.78	23.34	1.56	
11		2.65	21.68			

	WEEK 2					
Test Site	Material	S/D	SSG (Mn/m)	Average	Std. Deviation	
1		3.97	25.49			
1	RAP	3.81	25.03	23.94	2.30	
1		3.09	21.29			
2		3.37	22.91			
2	RAP	3.59	20.18	20.66	2.05	
2		2.82	18.90			
3		3.66	20.21			
3	RAP	2.69	21.18	21.01	0.73	
3		3.11	21.64			
4		2.67	20.25			
4	RAP	2.45	18.12	19.78	1.48	
4		2.87	20.96			
5		2.47	18.19			
5	RAP	2.51	18.36	19.00	1.26	
5		2.81	20.45			
6		2.84	20.97			
6	RAP	2.68	20.21	20.29	0.64	
6		2.72	19.69			
7		2.53	18.78			
7	RAP		18.78	17.86	1.60	
7		2.76	16.01			
8		2.49	19.23			
8	RAP	2.63	19.96	20.07	0.90	
8		1.51	21.02			
9		1.65	16.92			
9	Limerock	2.81	22.91	18.90	3.48	
9		1.79	16.86			
10		2.75	21.31			
10	Limerock	2.82	21.10	20.10	1.92	
10		1.92	17.88			
11		2.28	19.89			
11	Limerock	1.95	19.08	19.36	0.46	
11		2.32	19.11			

	WEEK 4					
Test Site	Material	S/D	SSG (Mn/m)	Average	Std. Deviation	
1		3.98	24.11			
1	RAP	3.67	24.10	22.69	2.45	
1		3.15	19.87			
2		3.43	17.24			
2	RAP	3.83	24.97	21.62	3.97	
2		4.27	22.66			
3		4.74	29.69			
3	RAP	3.45	24.89	25.31	4.19	
3		3.08	21.35			
4		2.90	19.15			
4	RAP	3.18	17.20	18.39	1.05	
4		3.13	18.83			
5		2.77	18.37			
5	RAP	3.50	22.07	19.44	2.29	
5		2.56	17.88			
6		3.15	21.25			
6	RAP	2.95	20.81	21.61	1.03	
6		3.30	22.77			
7		2.77	17.56	·		
7	RAP	2.64	19.55	18.92	1.18	
7		2.76	19.66			
8		3.72	19.89			
8	RAP	4.07	24.15	21.84	2.15	
8		3.31	21.47			
9		5.80	33.49	·		
9	Limerock	4.55	29.71	31.07	2.10	
9		4.13	30.01			
10		4.53	31.00			
10	Limerock	4.46	32.31	29.59	3.63	
10		4.46	25.47			
11		3.49	24.96			
11	Limerock	3.80	29.08	27.47	2.20	
11		3.68	28.37			

WEEK 6						
Test Site	Material	S/D	SSG (Mn/m)	Average	Std. Deviation	
1		5.76	30.82			
1	RAP	4.96	26.36	27.17	3.32	
1		4.51	24.33			
2		3.08	16.79			
2	RAP	3.12	20.17	17.93	1.94	
2		2.35	16.82			
3		4.32	27.87			
3	RAP	2.26	17.04	24.19	6.20	
3		4.17	27.67			
4		3.85	25.37			
4	RAP	3.30	20.35	24.26	3.49	
4		4.37	27.06			
5		2.50	11.92			
5	RAP	2.13	16.32	15.79	3.63	
5		2.95	19.12			
6		2.92	19.28			
6	RAP	4.19	22.41	22.55	3.34	
6		3.83	25.95			
7		3.11	20.71	·		
7	RAP	2.71	19.58	19.29	1.58	
7		3.26	17.59			
8		3.56	19.24			
8	RAP	3.24	20.51	19.99	0.67	
8		4.67	20.22			
9		3.15	24.39			
9	Limerock	1.31	17.57	21.38	3.48	
9		2.43	22.17			
10		3.87	24.34			
10	Limerock	2.34	21.72	19.90	5.58	
10		2.95	13.64			
11		2.84	21.79			
11	Limerock	5.71	17.97	19.80	1.92	
11		2.11	19.63			

WEEK 8						
Test Site	Material	S/D	SSG (Mn/m)	Average	Std. Deviation	
1		3.81	24.86			
1	RAP	4.41	15.47	18.80	5.26	
1		2.41	16.07			
2		2.54	17.92			
2	RAP	4.38	26.08	22.38	4.13	
2		4.29	23.13			
3		3.58	22.84			
3	RAP	2.71	18.49	20.83	2.19	
3		3.86	21.17			
4		3.29	21.23			
4	RAP	3.26	22.45	21.11	1.40	
4		3.53	19.66			
5		2.91	19.18	·		
5	RAP	2.60	18.08	18.22	0.90	
5		4.08	17.39			
6		3.72	24.92			
6	RAP	4.00	24.05	24.83	0.74	
6		3.92	25.52			
7		2.47	17.06			
7	RAP	2.62	18.51	17.39	0.99	
7		2.67	16.61			
8		2.91	17.13			
8	RAP	3.31	22.21	18.06	3.77	
8		5.75	14.84			
9		1.33	15.43			
9	Limerock	3.72	28.02	24.29	7.71	
9		3.83	29.43			
10		2.47	17.83			
10	Limerock	2.30	19.72	19.92	2.20	
10		2.62	22.22			
11		3.03	25.29			
11	Limerock	1.71	15.87	19.74	4.93	
11		2.07	18.06			

Appendix F

LBR From Field CBR Data

WEEK 1						
Test Site	Material	CBR @ 0.1	LBR @ 0.1			
1	RAP	20.7	25.9			
2	RAP	20.8	26.0			
3	RAP	13.3	16.6			
4	RAP	14.2	17.8			
5	RAP	16.2	20.3			
6	RAP	15.2	19.0			
7	RAP	22.1	27.6			
8	RAP	14.8	18.5			
9	Limerock	62.3	77.9			
10	Limerock	78.3	97.9			
11	Limerock	68.3	85.4			
	WEE	K 2				
Test Site	Material	CBR @ 0.1	LBR @ 0.1			
1	RAP	17.3	21.6			
2	RAP	20.5	25.6			
3	RAP	13.5	16.9			
4	RAP	24.8	31.0			
5	RAP	19.3	24.1			
6	RAP	21.7	27.1			
7	RAP	25.7	32.1			
8	RAP	21.8	27.3			
9	Limerock	91.3	114.1			
10	Limerock	55	68.8			
11	Limerock	68.3	85.4			

	WEEK 4						
Test Site	Material	CBR @ 0.1	LBR @ 0.1				
1	RAP	31.2	39.0				
2	RAP	20.8	26.0				
3	RAP	36.8	46.0				
4	RAP	37.2	46.5				
5	RAP	28.3	35.4				
6	RAP	36.3	45.4				
7	RAP	27	33.8				
8	RAP	17.2	21.5				
9	Limerock	84.7	105.9				
10	Limerock	75.8	94.8				
11	Limerock	83.7	104.6				
	W	eek 6					
Test Site	Material	CBR @ 0.1	LBR @ 0.1				
1	RAP	49.7	62.1				
2	RAP	37	46.3				
3	RAP	36.6	45.8				
4	RAP	29.7	37.1				
5	RAP	26.3	32.9				
6	RAP	31.7	39.6				
7	RAP	37.2	46.5				
8	RAP	28.3	35.4				
9	Limerock	75.7	94.6				
10	Limerock	104.5	130.6				
11	Limerock	64	80.0				

	Week 8							
Test Site	Material	CBR @ 0.1	LBR @ 0.1					
1	RAP	29.2	36.5					
2	RAP	26.7	33.4					
3	RAP	28.7	35.9					
4	RAP	40.8	51.0					
5	RAP	8.3	10.4					
6	RAP	24	30.0					
7	RAP	20.7	25.9					
8	RAP	24.7	30.9					
9	Limerock	50.3	62.9					
10	Limerock	37.5	46.9					
11	Limerock	53.3	66.6					

Appendix G

Temperature Correlations

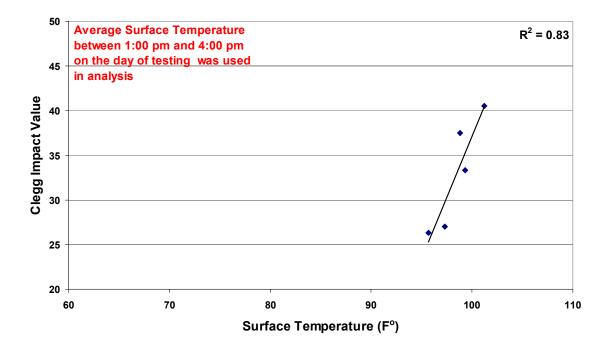


Figure G-1 Clegg Impact Value vs. RAP Surface Temperature

Figure G-2 ISM vs. RAP Surface Temperature

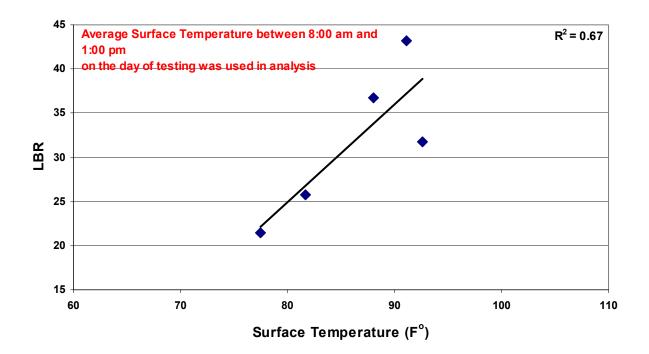
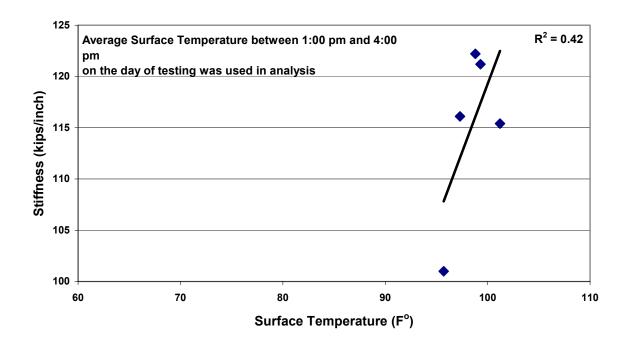
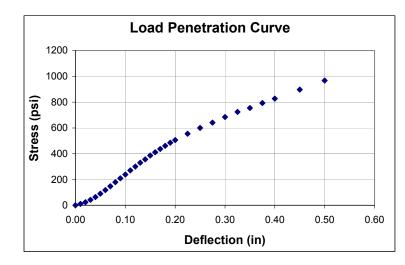


Figure G-3 LBR vs. RAP Surface Temperature



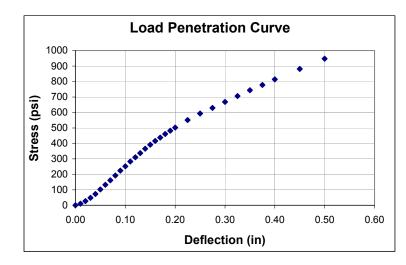

Figure G-4 SSG vs. RAP Surface Temperature

Appendix H

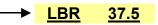
RAP-Soil Mixtures Laboratory LBR Data

Description of Soil	100% RA	P (1) @	woptimum	= 8%		Date	5/30/2002	(mixed) (compacted
Tested By	Francis						6/2/2002	
Compaction	Modified -	Metho	od D					
Comments	Sample w	as test	ed as a bas	e mater	ial (no surcharge)			
Compaction Moistu	re Conter	nt			_			
Can Number	7		8			Deflection	Stress	Load
Mass of Can	0.2792	lb	0.1320	lb		(in)	(psi)	(lb)
Mass of Wet Soil & Can	0.9556	lb	0.9576	lb		0.000	0.0	0
Mass of Dry Soil & Can	0.9036	lb	0.8958	lb		0.010	10.0	30
Mass of Dry Soil	0.6244	lb	0.7638	lb		0.020	23.4	70
Mass of Water	0.052	lb	0.0618	lb		0.030	42.9	128
w (%)	8.33	3	8.09)		0.040	64.3	192
Average w (%)	8.21		St Dev =	0.167		0.050	89.7	268
			_			0.060	117.9	352
Density Comput	ations					0.070	147.7	441
Mass of Mold	9.326	lb				0.080	179.8	537
Mass of Mold and Wet Soil	18.805	lb	1			0.090	208.6	623
Vol of Mold	0.07502	ft ³	1			0.100	238.7	713
Mass of Wet Soil	9.479	lb	1			0.110	270.2	807
Wet Density	126.4	lb/ft ³	1			0.120	300.4	897
Dry Density	116.8	lb/ft ³	1			0.130	330.5	987
			4			0.4.40	050.0	1000

Measurements							
Diameter of Piston	1.95	in					
Area of Piston	2.98648	in ²					

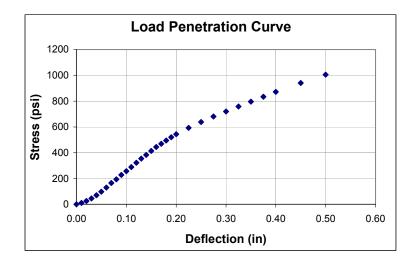


(in)	(psi)	(lb)
0.000	0.0	0
0.010	10.0	30
0.020	23.4	70
0.030	42.9	128
0.040	64.3	192
0.050	89.7	268
0.060	117.9	352
0.070	147.7	441
0.080	179.8	537
0.090	208.6	623
0.100	238.7	713
0.110	270.2	807
0.120	300.4	897
0.130	330.5	987
0.140	356.9	1066
0.150	385.7	1152
0.160	411.2	1228
0.170	436.6	1304
0.180	461.1	1377
0.190	485.5	1450
0.200	505.9	1511
0.225	555.2	1658
0.250	600.7	1794
0.275	641.6	1916
0.300	684.4	2044
0.325	724.3	2163
0.350	754.7	2254
0.375	793.6	2370
0.400	827.4	2471
0.450	897.0	2679
0.500	967.4	2889



Tested By Francis & Eric 6/7/2002 (tested)	Description of Soil	100% RA	P (2) @	<mark>) woptimum</mark>	= 8%		Date	6/4/2002 6/5/2002	(mixed) (compacted)
Comments Sample was tested as a base material (no surcharge) Compaction Moisture Content Deflection Stress Load $Can Number 7 8 Deflection Stress Load Mass of Can 0.2792 ib 0.1326 Ib Deflection Stress Load Mass of Wet Soil & Can 1.0000 ib 0.8122 Ib Deflection Stress Load Mass of Dry Soil 0.6684 lb 0.6278 Ib 0.030 48.2 144 w (%) 7.84 8.25 0.040 73.7 220 Average w (%) 8.05 St Dev = 0.291 0.050 102.8 307 0.060 132.6 18 18 18 2 144 0.070 161.4 482 0.070 161.4 482 0.080 192.2 574 Mass of Mold 9.325 Ib 0.100 252.5 754 Mass of Wold and Wet Soil 9.503 Ib 0.$	Tested By	Francis &	Eric						· · /
Compaction Moisture Content Deflection Stress Load Can Number 7 8 Deflection Stress Load Mass of Can 0.2792 lb 0.1326 lb Deflection Stress Load Mass of Can 0.2792 lb 0.1326 lb Deflection Stress Load Mass of Wet Soil & Can 0.9476 lb 0.7604 lb 0.000 0.0 0 Mass of Dry Soil 0.6684 lb 0.6278 lb 0.030 48.2 144 w (%) 7.84 8.25 0.040 73.7 220 Average w (%) 8.05 St Dev = 0.291 0.050 102.8 307 0.060 132.6 396 0.070 161.4 482 0.080 192.2 574 0.090 223.7 668 0.100 252.5 754 0.100 252.5 754 0.4 of Mold 0.07502 ft ³ 0.100	Compaction	Modified -	Metho	od D					
Can Number 7 8 Mass of Can 0.2792 lb 0.1326 lb Mass of Can 0.2792 lb 0.1326 lb Mass of Wet Soil & Can 1.0000 lb 0.8122 lb Mass of Dry Soil & Can 0.9476 lb 0.7604 lb Mass of Dry Soil 0.6684 lb 0.6278 lb Mass of Water 0.0524 lb 0.0518 lb w (%) 7.84 8.25 0.0400 73.7 220 Average w (%) 8.05 St Dev = 0.291 0.0600 132.6 396 Density Computations 0.07502 ft ³ 0.0700 161.4 482 0.090 223.7 668 0.100 252.5 754 0.090 223.7 668 0.100 252.5 754 0.100 252.5 754 0.100 252.5 754 0.100 $252.$	Comments	Sample w	as test	ed as a bas	e mater	ial (no surcharge)			
Mass of Can 0.2792 Ib 0.1326 IbMass of Can 1.0000 Ib 0.8122 IbMass of Dry Soil & Can 0.9476 Ib 0.7604 IbMass of Dry Soil 0.6684 Ib 0.6278 IbMass of Water 0.0524 Ib 0.0518 Ib w (%) 7.84 8.25 0.040 73.7 Average w (%) 8.05 St Dev = 0.291 Density ComputationsMass of Mold 9.325 IbMass of Mold and Wet Soil 18.828 IbVol of Mold 0.07502 ft^3 Wet Density 126.7 Ib/tt^3	Compaction Moistur	re Contei	nt			_			
Mass of Wet Soil & Can 1.0000 lb 0.8122 lb Mass of Dry Soil & Can 0.9476 lb 0.7604 lb Mass of Dry Soil 0.6684 lb 0.6278 lb Mass of Water 0.0524 lb 0.0518 lb Mass of Water 0.0524 lb 0.020 26.5 79 Mass of Mold 8.05 St Dev = 0.291 0.040 73.7 220 Mass of Mold 9.325 lb 0.060 132.6 396 Mass of Mold and Wet Soil 18.828 lb 0.070 161.4 482 0.090 223.7 668 0.100 252.5 754 0.100 252.5 754 0.100 282.9 845 0.100 282.9 845 0.120 310.7 928	Can Number	7		8			Deflection	Stress	Load
Mass of Dry Soil & Can 0.9476 $1b$ 0.7604 $1b$ Mass of Dry Soil 0.6684 $1b$ 0.6278 $1b$ Mass of Water 0.0524 $1b$ 0.0518 $1b$ Mass of Water 0.0524 $1b$ 0.0518 $1b$ W (%) 7.84 8.25 0.040 73.7 220 Average w (%) 8.05 St Dev = 0.291 0.050 102.8 307 Density Computations St Dev = 0.291 0.060 132.6 396 Mass of Mold 9.325 $1b$ 0.070 161.4 482 Mass of Mold and Wet Soil 18.828 $1b$ 0.090 223.7 668 Vol of Mold 0.07502 ft^3 0.100 252.5 754 Mass of Wet Soil 9.503 $1b$ 0.120 310.7 928	Mass of Can	0.2792	lb	0.1326	lb]	(in)	(psi)	(lb)
Mass of Dry Soil 0.6684 lb 0.6278 lb Mass of Water 0.0524 lb 0.0518 lb w (%) 7.84 8.25 0.040 7.37 220 Average w (%) 8.05 St Dev = 0.291 0.060 132.6 396 Density Computations Mass of Mold 9.325 lb 0.0700 161.4 482 Mass of Mold and Wet Soil 18.828 lb 0.0900 223.7 6688 Vol of Mold 0.07502 ft^3 0.1000 252.5 754 Mass of Wet Soil 9.503 lb 0.1100 282.9 8455 Wet Density 126.7 lb/t^3 0.1200 310.7 928	Mass of Wet Soil & Can	1.0000	lb	0.8122	lb		0.000	0.0	0
Mass of Water 0.0524 lb 0.0518 lb w (%) 7.84 8.25 0.040 73.7 220 Average w (%) 8.05 St Dev = 0.291 0.050 102.8 307 Density Computations 0.070 161.4 482 Mass of Mold 9.325 lb 0.070 161.4 482 Mass of Mold and Wet Soil 18.828 lb 0.090 223.7 668 Vol of Mold 0.07502 ft^3 0.100 252.5 754 Mass of Wet Soil 9.503 lb 0.110 282.9 845 Wet Density 126.7 lb/t^3 0.120 310.7 928	Mass of Dry Soil & Can	0.9476	lb	0.7604	lb		0.010	10.0	30
w (%) 7.84 8.25 Average w (%) 8.05 St Dev = 0.291 0.040 73.7 220 Density Computations 0.060 132.6 396 Mass of Mold 9.325 lb 0.080 192.2 574 Mass of Mold and Wet Soil 18.828 lb 0.090 223.7 668 Vol of Mold 0.07502 ft ³ 0.100 252.5 754 Mass of Wet Soil 9.503 lb 0.110 282.9 845 Wet Density 126.7 lb/t ³ 0.120 310.7 928	2	0.6684		0.6278	lb		0.020	26.5	79
Average w (%) 8.05 St Dev = 0.291 0.050 102.8 307 Density Computations 0.060 132.6 396 Mass of Mold 9.325 lb 0.070 161.4 482 Mass of Mold and Wet Soil 18.828 lb 0.090 223.7 668 Vol of Mold 0.07502 ft ³ 0.100 252.5 754 Mass of Wet Soil 9.503 lb 0.110 282.9 845 Wet Density 126.7 lb/ft ³ 0.120 310.7 928	Mass of Water	0.0524	lb	0.0518	lb		0.030	48.2	144
Density Computations 0.060 132.6 396 Mass of Mold 9.325 lb 0.070 161.4 482 Mass of Mold and Wet Soil 18.828 lb 0.090 223.7 668 Vol of Mold 0.07502 ft ³ 0.100 252.5 754 Mass of Wet Soil 9.503 lb 0.110 282.9 845 Wet Density 126.7 lb/t ³ / ₄ 0.120 310.7 928	w (%)	7.84	1	8.25	5		0.040	73.7	220
Density Computations 0.070 161.4 482 Mass of Mold 9.325 lb 0.080 192.2 574 Mass of Mold and Wet Soil 18.828 lb 0.090 223.7 668 Vol of Mold 0.07502 ft ³ 0.100 252.5 754 Mass of Wet Soil 9.503 lb 0.110 282.9 845 Wet Density 126.7 lb/t ³ 0.120 310.7 928	Average w (%)	8.05		St Dev =	0.291		0.050	102.8	307
Mass of Mold 9.325 Ib Mass of Mold and Wet Soil 18.828 Ib Vol of Mold 0.07502 ft ³ Mass of Wet Soil 9.503 Ib Wet Density 126.7 Ib/ft ³				-			0.060	132.6	396
Mass of Mold and Wet Soil 18.828 Ib 0.090 223.7 668 Vol of Mold 0.07502 ft ³ 0.100 252.5 754 Mass of Wet Soil 9.503 Ib 0.110 282.9 845 Wet Density 126.7 Ib/ft ³ 0.120 310.7 928	Density Comput	ations					0.070	161.4	482
Vol of Mold 0.07502 ft ³ 0.100 252.5 754 Mass of Wet Soil 9.503 lb 0.110 282.9 845 Wet Density 126.7 lb/ft ³ 0.120 310.7 928	Mass of Mold	9.325	lb	1			0.080	192.2	574
Mass of Wet Soil 9.503 lb 0.110 282.9 845 Wet Density 126.7 lb/ft ³ / ₂ 0.120 310.7 928	Mass of Mold and Wet Soil	18.828	lb	1			0.090	223.7	668
Wet Density 126.7 Ib/ft ³ / ₂ 0.120 310.7 928	Vol of Mold	0.07502	ft ³	1			0.100	252.5	754
	Mass of Wet Soil	9.503	lb	1			0.110	282.9	845
Dry Density 117.2 lb/ft ³ 0.130 337.5 1008	Wet Density	126.7	lb/ft ³]			0.120	310.7	928
	Dry Density	117.2	lb/ft ³]			0.130	337.5	1008

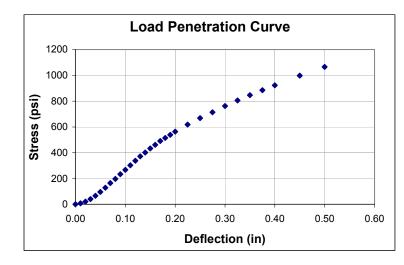
Measurements							
Diameter of Piston	1.95	in					
Area of Piston	2.98648	in ²					



0.010	10.0	30
0.020	26.5	79
0.030	48.2	144
0.040	73.7	220
0.050	102.8	307
0.060	132.6	396
0.070	161.4	482
0.080	192.2	574
0.090	223.7	668
0.100	252.5	754
0.110	282.9	845
0.120	310.7	928
0.130	337.5	1008
0.140	365.3	1091
0.150	391.8	1170
0.160	416.2	1243
0.170	437.6	1307
0.180	461.1	1377
0.190	482.5	1441
0.200	501.6	1498
0.225	550.8	1645
0.250	593.3	1772
0.275	629.8	1881
0.300	668.3	1996
0.325	705.8	2108
0.350	744.0	2222
0.375	777.8	2323
0.400	814.0	2431
0.450	881.3	2632
0.500	946.9	2828

Description of Soil	100% RA	P (3) @	voptimum	= 8%		Date	6/4/2002 6/5/2002	(mixed) (compacte
Tested By	Francis &	Eric					6/7/2002	(tested)
Compaction	Modified -	Metho	od D					
Comments	Sample w	as test	ed as a bas	<mark>e mater</mark>	rial (no surcharge)			
Compaction Moistu	re Conter	nt]					
Can Number	9		10			Deflection	Stress	Load
Mass of Can	0.0964	lb	0.1470	lb	1	(in)	(psi)	(lb)
Mass of Wet Soil & Can	0.9258	lb	0.8208	lb		0.000	0.0	0
Mass of Dry Soil & Can	0.8654	lb	0.7726	lb	1	0.010	10.0	30
Mass of Dry Soil	0.769	lb	0.6256	lb		0.020	25.4	76
Mass of Water	0.0604	lb	0.0482	lb		0.030	45.2	135
w (%)	7.85	5	7.70			0.040	69.6	208
Average w (%)	7.78		St Dev =	0.106		0.050	97.4	291
			-			0.060	129.9	388
Density Comput	ations					0.070	165.1	493
Mass of Mold	9.260	lb	1			0.080	193.5	578
Mass of Mold and Wet Soil	18.795	lb				0.090	228.0	681
Vol of Mold	0.07502	ft ³				0.100	257.5	769
Mass of Wet Soil	9.535	lb]			0.110	288.6	862
Wet Density	127.1	lb/ft ³				0.120	322.1	962
Dry Density	117.9	lb/ft ³	1			0.130	354.3	1058
<i>. . . .</i>			4			0.140	383.1	1144
						0.150	414.5	1238
Measuremer	nts]			0.160	444.0	1326

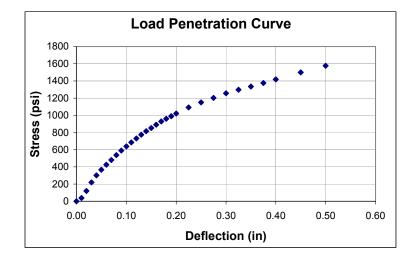
Measurements						
Diameter of Piston	1.95	in				
Area of Piston	2.98648	in ²				


(in)	(psi)	(lb)		
0.000	0.0	0		
0.010	10.0	30		
0.020	25.4	76		
0.030	45.2	135		
0.040	69.6	208		
0.050	97.4	291		
0.060	129.9	388		
0.070	165.1	493		
0.080	193.5	578		
0.090	228.0	681		
0.100	257.5	769		
0.110	288.6	862		
0.120	322.1	962		
0.130	354.3	1058		
0.140	383.1	1144		
0.150	414.5	1238		
0.160	444.0	1326		
0.170	469.4	1402		
0.180	494.9	1478		
0.190	519.7	1552		
0.200	544.1	1625		
0.225	593.3	1772		
0.250	638.2	1906		
0.275	680.4	2032		
0.300	719.6	2149		
0.325	758.4	2265		
0.350	796.3	2378		
0.375	833.8	2490		
0.400	871.9	2604		
0.450	941.2	2811		
0.500	1005.5	3003		

Description of Soil		. , ,	@ woptimum	= 8%		Date	6/10/2002 6/11/2002	(cor
Tested By Compaction	Francis & Modified -		od D				6/13/2002	(te
Comments				e mater	r <mark>ial (no surcharge)</mark>			
Compaction Moistu	re Conter	nt	1		_			
Can Number	5		6			Deflection	Stress	
Mass of Can	0.1248	lb	0.1574	lb]	(in)	(psi)	
Mass of Wet Soil & Can	0.8888	lb	0.9128	lb]	0.000	0.0	
Mass of Dry Soil & Can	0.8334	lb	0.8656	lb]	0.010	7.4	
Mass of Dry Soil	0.7086	lb	0.7082	lb]	0.020	21.1	
Mass of Water	0.0554	lb	0.0472	lb		0.030	40.5	
w (%)	7.82	2	6.66]	0.040	66.3	
Average w (%)	7.24		St Dev =	0.816	-	0.050	95.1	
		-	_			0.060	128.9	
Density Comput	ations					0.070	164.1	
Mass of Mold	9.259	lb				0.080	196.9	
Mass of Mold and Wet Soil	18.791	lb				0.090	233.7	
		er 3						

Widdo of Widid	0.200	10
Mass of Mold and Wet Soil	18.791	lb
Vol of Mold	0.07502	ft ³
Mass of Wet Soil	9.532	lb
Wet Density	127.1	lb/ft ³
Dry Density	118.5	lb/ft ³

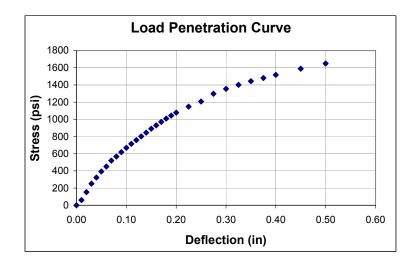
Measurements							
Diameter of Piston	1.95	in					
Area of Piston	2.98648	in ²					



20110001011	0000				
(in)	(psi)	(lb)			
0.000	0.0	0			
0.010	7.4	22			
0.020	21.1	63			
0.030	40.5	121			
0.040	66.3	198			
0.050	95.1	284			
0.060	128.9	385			
0.070	164.1	490			
0.080	196.9	588			
0.090	233.7	698			
0.100	266.5	796			
0.110	302.7	904			
0.120	337.5	1008			
0.130	371.3	1109			
0.140	401.8	1200			
0.150	433.3	1294			
0.160	461.1	1377			
0.170	490.9	1466			
0.180	514.3	1536			
0.190	539.1	1610			
0.200	563.5	1683			
0.225	618.5	1847			
0.250	668.3	1996			
0.275	714.2	2133			
0.300	761.8	2275			
0.325	806.0	2407			
0.350	846.5	2528			
0.375	884.7	2642			
0.400	922.8	2756			
0.450	997.8	2980			
0.500	1065.5	3182			

Description of Soil	80% RAP	(1) @	woptimum =	= 6%		Date	6/18/2002 6/19/2002	(mixed) (compacte
Tested By	Francis						6/21/2002	
Compaction	Modified -	Metho	od D					
Comments	Sample w	as test	ed as a bas	e mater	rial (no surcharge))		
Compaction Moistu	re Conter	nt	1					
Can Number	3		4			Deflection	Stress	Load
Mass of Can	0.3092	lb	0.1518	lb		(in)	(psi)	(lb)
Mass of Wet Soil & Can	1.0542	lb	0.8292	lb		0.000	0.0	0
Mass of Dry Soil & Can	1.0100	lb	0.7928	lb		0.010	38.2	114
Mass of Dry Soil	0.7008	lb	0.641	lb		0.020	120.2	359
Mass of Water	0.0442	lb	0.0364	lb		0.030	219.3	655
w (%)	6.3	1	5.68			0.040	302.7	904
Average w (%)	5.99		St Dev =	0.444		0.050	367.3	1097
			•			0.060	424.9	1269
Density Comput	tations					0.070	480.2	1434
Mass of Mold	9.295	lb				0.080	537.4	1605
Mass of Mold and Wet Soil	19.025	lb				0.090	590.7	1764
Vol of Mold	0.07502	ft ³				0.100	638.2	1906
Mass of Wet Soil	9.7305	lb]			0.110	685.1	2046
Wet Density	129.7	lb/ft ³				0.120	730.0	2180
Dry Density	122.4	lb/ft ³]			0.130	774.8	2314
	•		•			0.140	815.3	2435
			-			0.150	853.2	2548
Measureme	nts					0.160	891.4	2662
Diamatar of Diatan	1.05	in	1			0.170	000 E	0770

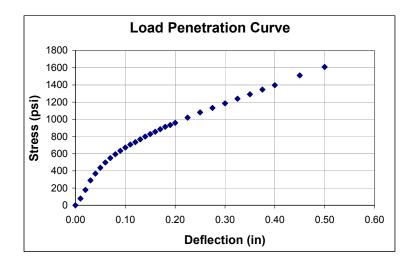
Diameter of Piston	1 05	in
Area of Piston	2.98648	in ²



0.010	38.2	114
0.020	120.2	359
0.030	219.3	655
0.040	302.7	904
0.050	367.3	1097
0.060	424.9	1269
0.070	480.2	1434
0.080	537.4	1605
0.090	590.7	1764
0.100	638.2	1906
0.110	685.1	2046
0.120	730.0	2180
0.130	774.8	2314
0.140	815.3	2435
0.150	853.2	2548
0.160	891.4	2662
0.170	928.5	2773
0.180	960.0	2867
0.190	990.5	2958
0.200	1020.9	3049
0.225	1092.3	3262
0.250	1150.9	3437
0.275	1203.1	3593
0.300	1256.3	3752
0.325	1297.9	3876
0.350	1335.0	3987
0.375	1376.5	4111
0.400	1419.1	4238
0.450	1499.4	4478
0.500	1577.4	4711

Description of Soil	80% RAP	(2) @	woptimum =	= 6%		Date	6/18/2002	(mixed) (compacte
Tested By	Francis						6/21/2002	· ·
Compaction	Modified -	Metho	od D					
Comments	Sample w	as test	ted as a bas	e mater	rial (no surcharge)			
Compaction Moistu	re Conte	nt]		_			
Can Number	5		6			Deflection	Stress	Load
Mass of Can	0.1248	lb	0.1575	lb		(in)	(psi)	(lb)
Mass of Wet Soil & Can	0.9854	lb	1.0446	lb		0.000	0.0	0
Mass of Dry Soil & Can	0.9350	lb	0.9942	lb		0.010	60.6	181
Mass of Dry Soil	0.8102	lb	0.8367	lb		0.020	153.7	459
Mass of Water	0.0504	lb	0.0504	lb		0.030	250.8	749
w (%)	6.2	2	6.02			0.040	323.1	965
Average w (%)	6.12		St Dev =	0.139		0.050	393.4	1175
			-			0.060	450.4	1345
Density Comput	ations					0.070	519.0	1550
Mass of Mold	9.322	lb				0.080	567.9	1696
Mass of Mold and Wet Soil	19.090	lb				0.090	618.1	1846
Vol of Mold	0.07502	ft ³				0.100	668.7	1997
Mass of Wet Soil	9.768	lb				0.110	714.6	2134
Wet Density	130.2	lb/ft ³				0.120	758.4	2265
Dry Density	122.7	lb/ft ³				0.130	801.6	2394
· · ·			-			0.140	845.1	2524
			-			0.150	890.7	2660
Moasuromo	nte		I			0 160	021.2	2701

Measurements						
Diameter of Piston	1.95	in				
Area of Piston	2.98648	in ²				

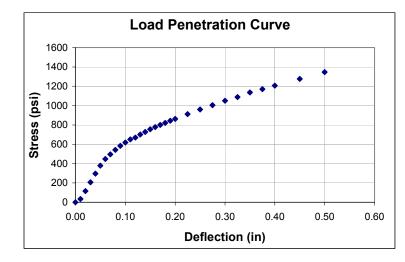


(in)	(psi)	(lb)				
0.000	0.0	0				
0.010	60.6	181				
0.020	153.7	459				
0.030	250.8	749				
0.040	323.1	965				
0.050	393.4	1175				
0.060	450.4	1345				
0.070	519.0	1550				
0.080	567.9	1696				
0.090	618.1	1846				
0.100	668.7	1997				
0.110	714.6	2134				
0.120	758.4	2265				
0.130	801.6	2394				
0.140	845.1	2524				
0.150	890.7	2660				
0.160	931.2	2781				
0.170	970.4	2898				
0.180	1008.9	3013				
0.190	1044.0	3118				
0.200	1077.9	3219				
0.225	1148.2	3429				
0.250	1207.4	3606				
0.275	1297.2	3874				
0.300	1354.8	4046				
0.325	1402.0	4187				
0.350	1443.5	4311				
0.375	1480.7	4422				
0.400	1518.2	4534				
0.450	1588.8	4745				
0.500	1650.1	4928				

→ <u>LBR</u>

<u>86.9</u>

Description of Soil	80% RAP	(3) @	woptimum =	= 6%		Date	7/2/2002	(mixed)
							7/3/2002	(p
Tested By	Eric						7/5/2002	(tested)
Compaction	Modified -	Metho	od D					
Comments	Sample w	as test	t <mark>ed as a bas</mark>	e mater	ial (no surcharge)			
Compaction Moistu	re Contei	nt]		_			
Can Number	5		6			Deflection	Stress	Load
Mass of Can	0.1248	lb	0.1574	lb		(in)	(psi)	(lb)
Mass of Wet Soil & Can	0.9742	lb	1.0002	lb		0.000	0.0	0
Mass of Dry Soil & Can	0.9234	lb	0.9554	lb		0.010	77.3	231
Mass of Dry Soil	0.7986	lb	0.798	lb		0.020	178.5	533
Mass of Water	0.0508	lb	0.0448	lb		0.030	290.0	866
w (%)	6.3	6	5.61			0.040	369.0	1102
Average w (%)	5.99		St Dev =	0.528		0.050	437.0	1305
			-			0.060	498.6	1489
Density Comput	tations					0.070	548.5	1638
Mass of Mold	9.320	lb				0.080	594.3	1775
Mass of Mold and Wet Soil	18.988	lb				0.090	634.2	1894
Vol of Mold	0.07502	ft ³				0.100	673.0	2010
Mass of Wet Soil	9.668	lb				0.110	706.2	2109
Wet Density	128.9	lb/ft ³				0.120	734.6	2194
Dry Density	121.6	lb/ft ³				0.130	766.8	2290
			-			0.140	800.3	2390
			_			0.150	828.7	2475
Measuremei	nts]			0.160	855.9	2556
Diameter of Piston	1.95	in				0.170	885.3	2644
Area of Piston	2.98648	in ²				0.180	914.1	2730
			-			0.400	000.0	0700

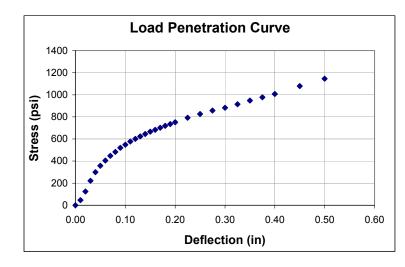

0.010	77.3	231
0.020	178.5	533
0.030	290.0	866
0.040	369.0	1102
0.050	437.0	1305
0.060	498.6	1489
0.070	548.5	1638
0.080	594.3	1775
0.090	634.2	1894
0.100	673.0	2010
0.110	706.2	2109
0.120	734.6	2194
0.130	766.8	2290
0.140	800.3	2390
0.150	828.7	2475
0.160	855.9	2556
0.170	885.3	2644
0.180	914.1	2730
0.190	933.9	2789
0.200	958.3	2862
0.225	1019.3	3044
0.250	1080.9	3228
0.275	1133.4	3385
0.300	1186.0	3542
0.325	1239.6	3702
0.350	1290.1	3853
0.375	1346.7	4022
0.400	1396.6	4171
0.450	1510.1	4510
0.500	1609.6	4807

escription of Soil	80% RAP	(4)@	woptimum =	= 6%		Date	7/11/2002	
anted Du	Enia						7/12/2002	
ested By	Eric						7/14/2002	(
ompaction	Modified -	- Metho	od D					
omments	Sample w	as test	ted as a bas	<mark>e mater</mark>	ial (no surcharge)			
Compaction Moistu	re Contei	nt]		_			
Can Number	1		2			Deflection	Stress	Т
Mass of Can	0.1532	lb	0.2832	lb		(in)	(psi)	
Mass of Wet Soil & Can	1.0028	lb	0.9270	lb		0.000	0.0	Т
Mass of Dry Soil & Can	0.9578	lb	0.8894	lb		0.010	33.8	T
Mass of Dry Soil	0.8046	lb	0.6062	lb		0.020	115.5	
Mass of Water	0.045	lb	0.0376	lb		0.030	206.3	
w (%)	5.59	9	6.20)		0.040	296.3	
Average w (%)	5.90		St Dev =	0.431	-	0.050	379.0	
			-			0.060	447.0	
Density Comput	ations					0.070	495.9	
Mass of Mold	9.320	lb	1			0.080	542.4	

Density Computations						
Mass of Mold	9.320	lb				
Mass of Mold and Wet Soil	18.929	lb				
Vol of Mold	0.07502	ft ³				
Mass of Wet Soil	9.609	lb				
Wet Density	128.1	lb/ft ³				
Dry Density	121.0	lb/ft ³				

Measurements							
Diameter of Piston	1.95	in					
Area of Piston	2.98648	in ²					

Deflection	Stress	Load
(in)	(psi)	(lb)
0.000	0.0	0
0.010	33.8	101
0.020	115.5	345
0.030	206.3	616
0.040	296.3	885
0.050	379.0	1132
0.060	447.0	1335
0.070	495.9	1481
0.080	542.4	1620
0.090	584.3	1745
0.100	617.8	1845
0.110	650.9	1944
0.120	669.7	2000
0.130	701.5	2095
0.140	727.9	2174
0.150	755.1	2255
0.160	778.5	2325
0.170	800.6	2391
0.180	820.4	2450
0.190	843.1	2518
0.200	862.2	2575
0.225	911.4	2722
0.250	959.7	2866
0.275	1004.5	3000
0.300	1049.7	3135
0.325	1088.6	3251
0.350	1136.1	3393
0.375	1169.9	3494
0.400	1206.4	3603
0.450	1275.4	3809
0.500	1346.7	4022



Description of Soil	60% RAP (1) @ woptimum = 7.8%					Date	6/24/2002	
ested By	Francis &	Eric					6/25/2002 6/27/2002	
compaction	Modified -	Metho	od D					
omments	Sample w	as tes	ted as a bas	e mater	ial (no surcharge)			
Compaction Moistur	re Conter	nt]					
Can Number	5		6			Deflection	Stress	Τ
Mass of Can	0.1248	lb	0.1576	lb		(in)	(psi)	
Mass of Wet Soil & Can	0.9890	lb	0.9808	lb		0.000	0.0	T
Mass of Dry Soil & Can	0.9242	lb	0.9232	lb		0.010	46.9	T
Mass of Dry Soil	0.7994	lb	0.7656	lb		0.020	124.9	T
Mass of Water	0.0648	lb	0.0576	lb		0.030	222.0	
w (%)	8.1	1	7.52			0.040	300.4	
Average w (%)	7.81		St Dev =	0.412		0.050	357.3	
			_			0.060	404.5	
Density Comput	ations					0.070	447.7	
Mass of Mold	9.322	lb	1			0.080	483.5	T
Mass of Mold and Wet Soil	18.904	lb]			0.090	519.7	T
Vol of Mold	0.07502	ft ³	1			0.100	548.8	T
Mass of Wet Soil	9.582	lb	1			0.110	576.6	Т

Measuremen	ts	
Diameter of Piston	1.95	in
Area of Piston	2.98648	in ²

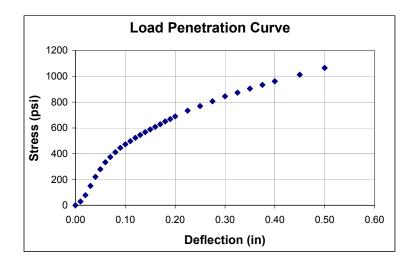
Wet Density

Dry Density

lb/ft³

lb/ft³

127.7


118.5

(in)	(psi)	(lb)
0.000	0.0	0
0.010	46.9	140
0.020	124.9	373
0.030	222.0	663
0.040	300.4	897
0.050	357.3	1067
0.060	404.5	1208
0.070	447.7	1337
0.080	483.5	1444
0.090	519.7	1552
0.100	548.8	1639
0.110	576.6	1722
0.120	601.7	1797
0.130	623.1	1861
0.140	645.2	1927
0.150	666.3	1990
0.160	683.1	2040
0.170	701.8	2096
0.180	719.6	2149
0.190	735.0	2195
0.200	751.7	2245
0.225	791.6	2364
0.250	826.1	2467
0.275	856.9	2559
0.300	882.3	2635
0.325	914.5	2731
0.350	947.3	2829
0.375	977.7	2920
0.400	1007.2	3008
0.450	1079.2	3223
0.500	1145.5	3421



Description of Soil	60% RAP	<mark>(2) @</mark>	woptimum =	- 7.8%		Date	7/2/2002 7/3/2002	(mixe (com
ested By	Eric						7/5/2002	(tes
-								
Compaction	Modified -	- Metho	od D					
Comments	Sample w	as test	ted as a base	e mater	rial (no surcharge)			
Compaction Moistu	re Conte	nt]					
Can Number	1		2		1	Deflection	Stress	Τ
Mass of Can	0.1532	lb	0.2832	lb	1	(in)	(psi)	
Mass of Wet Soil & Can	0.9016	lb	0.9438	lb		0.000	0.0	
Mass of Dry Soil & Can	0.8458	lb	0.8956	lb		0.010	29.5	
Mass of Dry Soil	0.6926	lb	0.6124	lb		0.020	78.7	
Mass of Water	0.0558	lb	0.0482	lb		0.030	150.3	
w (%)	8.0	6	7.87			0.040	221.3	
Average w (%)	7.96		St Dev =	0.131		0.050	280.3	
			1			0.060	334.2	_
Density Comput	ations					0.070	374.7	
Mass of Mold	9.256	lb				0.080	411.9	
Mass of Mold and Wet Soil	18.857	lb				0.090	445.0	
Vol of Mold	0.07502	ft ³				0.100	472.8	
Mass of Wet Soil	9.601	lb]			0.110	497.2	
Wet Density	128.0	lb/ft ³				0.120	522.7	
Dry Density	118.5	lb/ft ³				0.130	545.5	

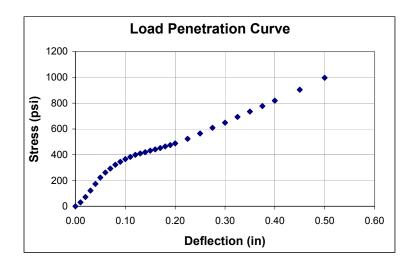
Measuremen	ts	
Diameter of Piston	1.95	in
Area of Piston	2.98648	in ²

Deflection	Stress	Load
(in)	(psi)	(lb)
0.000	0.0	0
0.010	29.5	88
0.020	78.7	235
0.030	150.3	449
0.040	221.3	661
0.050	280.3	837
0.060	334.2	998
0.070	374.7	1119
0.080	411.9	1230
0.090	445.0	1329
0.100	472.8	1412
0.110	497.2	1485
0.120	522.7	1561
0.130	545.5	1629
0.140	567.6	1695
0.150	588.0	1756
0.160	607.7	1815
0.170	628.5	1877
0.180	650.6	1943
0.190	668.3	1996
0.200	689.4	2059
0.225	733.6	2191
0.250	770.1	2300
0.275	806.6	2409
0.300	845.5	2525
0.325	873.9	2610
0.350	905.4	2704
0.375	934.2	2790
0.400	961.3	2871
0.450	1012.9	3025
0.500	1065.5	3182

Description of Soil	60% RAP	(3) @	woptimum =	7.8%		Date	7/22/2002 7/23/2002	
ested By	Eric						7/25/2002	
ompaction	Modified -	Metho	od D					
omments	Sample w	as test	ted as a bas	<mark>e mater</mark>	rial (no surcharge)			
Compaction Moistur	re Conter	nt]		_			_
Can Number	3		4			Deflection	Stress	Τ
Mass of Can	0.3092	lb	0.1516	lb		(in)	(psi)	
Mass of Wet Soil & Can	0.9444	lb	0.9990	lb	1	0.000	0.0	T
Mass of Dry Soil & Can	0.8980	lb	0.9362	lb		0.010	23.8	T
Mass of Dry Soil	0.5888	lb	0.7846	lb		0.020	74.7	
Mass of Water	0.0464	lb	0.0628	lb		0.030	153.7	
w (%)	7.88	3	8.00)		0.040	220.7	
Average w (%)	7.94		St Dev =	0.087		0.050	278.6	
			-			0.060	332.2	
Density Comput	ations					0.070	379.0	
Mass of Mold	9.289	lb				0.080	421.2	
Mass of Mold and Wot Soil	10 122	lh				0.000	150 7	

Mass of Mold	9.289	lb
Mass of Mold and Wet Soil	19.132	lb
Vol of Mold	0.07502	ft ³
Mass of Wet Soil	9.843	lb
Wet Density	131.2	lb/ft ³
Dry Density	121.6	lb/ft ³
•		

Measuremen	ts	
Diameter of Piston	1.95	in
Area of Piston	2.98648	in ²


Deflection	Stress	Load
(in)	(psi)	(lb)
0.000	0.0	0
0.010	23.8	71
0.020	74.7	223
0.030	153.7	459
0.040	220.7	659
0.050	278.6	832
0.060	332.2	992
0.070	379.0	1132
0.080	421.2	1258
0.090	458.7	1370
0.100	501.6	1498
0.110	536.4	1602
0.120	572.9	1711
0.130	601.4	1796
0.140	632.5	1889
0.150	661.0	1974
0.160	689.4	2059
0.170	716.6	2140
0.180	746.4	2229
0.190	776.8	2320
0.200	808.0	2413
0.225	885.0	2643
0.250	955.6	2854
0.275	1020.6	3048
0.300	1081.5	3230
0.325	1138.5	3400
0.350	1199.1	3581
0.375	1260.3	3764
0.400	1319.3	3940
0.450	1433.8	4282
0.500	1546.3	4618

Description of Soil	60% RAP	(4) @	woptimum =	7.8%		Date	7/22/2002 7/23/2002	
ested By	Eric						7/25/2002	
compaction	Modified -	Metho	od D					
omments	Sample w	as test	ted as a bas	e mater	rial (no surcharge)			
Compaction Moistu	re Conter	nt]		_			
Can Number	5		6		1	Deflection	Stress	1
Mass of Can	0.1248	lb	0.1574	lb		(in)	(psi)	
Mass of Wet Soil & Can	0.9378	lb	0.9822	lb		0.000	0.0	Ī
Mass of Dry Soil & Can	0.8752	lb	0.9214	lb	1	0.010	29.8	1
Mass of Dry Soil	0.7504	lb	0.764	lb		0.020	71.7	
Mass of Water	0.0626	lb	0.0608	lb		0.030	121.9	
w (%)	8.34	1	7.96			0.040	174.1	
Average w (%)	8.15		St Dev =	0.272		0.050	223.0	
			-			0.060	261.8	
Density Comput	ations					0.070	292.3	
Mass of Mold	9.318	lb				0.080	322.1	Ī
Mass of Mold and Wet Soil	19.060	lb				0.090	345.2	Ī
Vol of Mold	0.07502	ft ³]			0.100	366.3	Ī
Mass of Wet Soil	9.742	lb				0.110	383.4	Ī
Wet Density	129.9	lb/ft ³				0.120	398.8	T
		2						

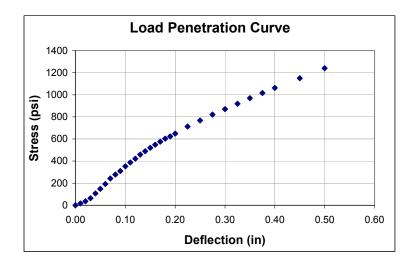
Measurements								
Diameter of Piston	1.95	in						
Area of Piston	2.98648	in ²						

Dry Density

120.1

lb/ft³

0.010	29.8	89
0.020	71.7	214
0.030	121.9	364
0.040	174.1	520
0.050	223.0	666
0.060	261.8	782
0.070	292.3	873
0.080	322.1	962
0.090	345.2	1031
0.100	366.3	1094
0.110	383.4	1145
0.120	398.8	1191
0.130	409.8	1224
0.140	419.9	1254
0.150	430.9	1287
0.160	441.7	1319
0.170	452.0	1350
0.180	464.1	1386
0.190	475.1	1419
0.200	487.9	1457
0.225	523.0	1562
0.250	564.5	1686
0.275	609.4	1820
0.300	648.6	1937
0.325	693.1	2070
0.350	734.6	2194
0.375	777.2	2321
0.400	818.7	2445
0.450	904.1	2700
0.500	996.5	2976



Description of Soil	100% RAP (1) @ woptimum = 8%					Date	6/10/2002 6/11/2002	(mixed) (compacted
Tested By	Francis &	Eric					6/13/2002	
Compaction	Modified -	Metho	od D					
Comments	Tested as	a sub	grade mater	ial (15 I	b surcharge)			
Compaction Moistu	re Conter	nt]		_			
Can Number	3		4			Deflection	Stress	Load
Mass of Can	0.3094	lb	0.1516	lb		(in)	(psi)	(lb)
Mass of Wet Soil & Can	0.9562	lb	0.9678	lb		0.000	0.0	0
Mass of Dry Soil & Can	0.9032	lb	0.9086	lb		0.010	17.1	51
Mass of Dry Soil	0.5938	lb	0.757	lb		0.020	36.8	110
Mass of Water	0.053	lb	0.0592	lb		0.030	63.6	190
w (%)	8.93	3	7.82	2		0.040	106.5	318
Average w (%)	8.37		St Dev =	0.782	-	0.050	148.7	444
			_			0.060	193.2	577
Density Computations						0.070	242.8	725
Mass of Mold	9.324	lb	1			0.080	277.9	830
Mass of Mold and Wet Soil	18.889	lb				0.090	310.4	927
Vol of Mold	0.07502	ft ³]			0.100	352.9	1054
Mass of Wet Soil	9.565	lb	1			0.110	387.1	1156

Measurements								
Diameter of Piston	1.95	in						
Area of Piston	2.98648	in ²						

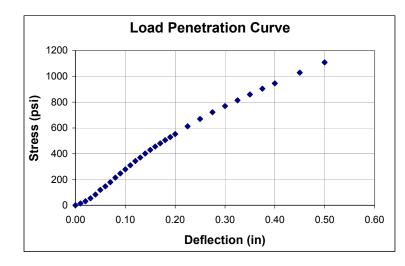
Wet Density

Dry Density

lb/ft³

lb/ft³

127.5

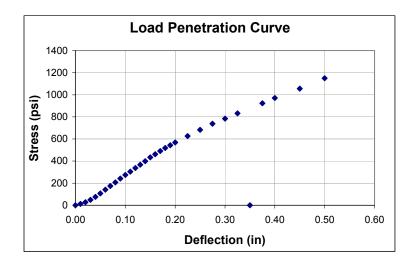

117.7

Deflection	Stress	Load
(in)	(psi)	(lb)
0.000	0.0	0
0.010	17.1	51
0.020	36.8	110
0.030	63.6	190
0.040	106.5	318
0.050	148.7	444
0.060	193.2	577
0.070	242.8	725
0.080	277.9	830
0.090	310.4	927
0.100	352.9	1054
0.110	387.1	1156
0.120	421.2	1258
0.130	458.4	1369
0.140	488.2	1458
0.150	520.0	1553
0.160	547.8	1636
0.170	576.3	1721
0.180	603.7	1803
0.190	623.8	1863
0.200	648.3	1936
0.225	712.5	2128
0.250	767.8	2293
0.275	820.4	2450
0.300	870.3	2599
0.325	919.1	2745
0.350	969.4	2895
0.375	1015.9	3034
0.400	1062.5	3173
0.450	1149.5	3433
0.500	1239.6	3702

Tested By Francis 6/17/2002 (tested) Compaction Modified - Method D	Description of Soil	100% RA	100% RAP (2) @ woptimun				Dat	te	6/14/2002	(mixed) (compacted)
Comments Tested as a subgrade material (15 lb surcharge) Compaction Moisture Content Deflection Stress Load Mass of Can 0.1534 lb 0.2834 lb Mass of Wet Soil & Can 0.8226 lb 1.0184 lb Mass of Dry Soil & Can 0.7718 lb 0.9666 lb Mass of Dry Soil 0.6184 lb 0.6832 lb Mass of Water 0.0508 lb 0.0518 lb W(%) 8.21 7.58 0.040 83.0 248 Average w (%) 7.90 St Dev = 0.447 0.0500 146.3 437 0.020 214.3 640 0.090 246.4 736 Mass of Mold 9.2585 lb 0.100 278.9 833 0.100 278.9 833 0.110 310.1 926 Wass of Wold and Wet Soil 9.5525 lb 0.120 342.9 1024	Tested By	Francis							· · /	
Compaction Moisture Content Can Number 1 2 Mass of Can 0.1534 lb 0.2834 lb Mass of Can 0.1534 lb 0.2834 lb Mass of Can 0.8226 lb 1.0184 lb Mass of Dry Soil & Can 0.7718 lb 0.9666 lb Mass of Dry Soil 0.6184 lb 0.6832 lb 0.020 31.1 93 Mass of Water 0.0508 lb 0.0518 lb 0.030 54.2 162 w (%) 8.21 7.58 0.040 83.0 248 Outot 14.3 437 0.050 119.5 357 Mass of Mold 9.2585 lb 0.0447 0.050 146.3 437 Mass of Mold and Wet Soil 18.811 lb 0.070 179.1 535 Mass of Wold 0.07502 ft ³ 0.100 278.9 833 Mass of Wet Soil 9.5525 lb 0.120	Compaction	Modified -	Metho	od D						
Can Number 1 2 Mass of Can 0.1534 lb 0.2834 lb Mass of Can 0.8226 lb 1.0184 lb Mass of Wet Soil & Can 0.8226 lb 1.0184 lb Mass of Dry Soil & Can 0.7718 lb 0.9666 lb Mass of Dry Soil 0.6184 lb 0.6832 lb Mass of Water 0.0508 lb 0.0518 lb w (%) 8.21 7.58 0.040 83.0 248 Outod 9.2585 lb 0.0500 119.5 357 Outod 9.2585 lb 0.070 179.1 535 Mass of Mold 9.2585 lb 0.080 214.3 640 Nass of Mold 9.5525 lb 0.100 278.9 833 0.100 278.9 833 0.110 310.1 926 Wet Density 127.3 lb/t1 0.120 342.9 1024	Comments	Tested as	a sub	grade mater	ial (15 l	b surcharge)				
Mass of Can 0.1534 lb 0.2834 lb Mass of Can 0.8226 lb 1.0184 lb Mass of Wet Soil & Can 0.7718 lb 0.9666 lb Mass of Dry Soil 0.6184 lb 0.6832 lb Mass of Dry Soil 0.6184 lb 0.6832 lb Mass of Water 0.0508 lb 0.0518 lb w (%) 8.21 7.58 0.040 83.0 248 Average w (%) 7.90 St Dev = 0.447 0.050 119.5 357 0.060 146.3 437 0.070 179.1 535 Mass of Mold 9.2585 lb 0.080 214.3 640 0.090 246.4 736 0.100 278.9 833 0.100 278.9 833 0.110 310.1 926 Wet Density 127.3 lb/t1 0.120 342.9 1024	Compaction Moistur	e Conter	nt			_				
Mass of Wet Soil & Can 0.8226 lb 1.0184 lb Mass of Dry Soil 0.7718 lb 0.9666 lb Mass of Dry Soil 0.6184 lb 0.6832 lb Mass of Water 0.0508 lb 0.0518 lb Mass of Water 0.0508 lb 0.0518 lb w (%) 8.21 7.58 0.047 0.0500 119.5 357 Average w (%) 7.90 St Dev = 0.447 0.0500 146.3 437 Density Computations 0.07502 ft ³ 0.0700 179.1 535 Mass of Mold 9.2585 lb 0.000 0.000 246.4 736 Vol of Mold 0.07502 ft ³ 0.110 310.1 926 Wet Density 127.3 lb/t ³ 0.120 342.9 1024	Can Number	1		2			De	flection	Stress	Load
Mass of Dry Soil & Can 0.7718 lb 0.9666 lb Mass of Dry Soil 0.6184 lb 0.6832 lb Mass of Dry Soil 0.6184 lb 0.6832 lb Mass of Water 0.0508 lb 0.0518 lb $w (%)$ 8.21 7.58 0.047 0.040 83.0 248 Average w (%) 7.90 St Dev = 0.447 0.050 119.5 357 Density Computations 0.2585 lb 0.070 179.1 535 Mass of Mold 9.2585 lb 0.0700 179.1 535 Mass of Mold and Wet Soil 18.811 lb 0.0700 278.9 833 Vol of Mold 0.07502 ft ³ 0.110 310.1 926 Wet Density 127.3 lb/t^3 0.120 342.9 1024	Mass of Can	0.1534	lb	0.2834	lb			(in)	(psi)	(lb)
Mass of Dry Soil 0.6184 lb 0.6832 lb Mass of Water 0.0508 lb 0.0518 lb W(%) 8.21 7.58 0.047 0.0500 146.3 248 Average w (%) 7.90 St Dev = 0.447 0.0500 119.5 357 Density Computations 0.070 179.1 535 0.080 214.3 640 Mass of Mold 9.2585 lb 0.0700 179.1 535 Mass of Mold and Wet Soil 18.811 lb 0.090 246.4 736 Vol of Mold 0.07502 ft ³ 0.110 310.1 926 Wet Density 127.3 lb/t ³ 0.120 342.9 1024	Mass of Wet Soil & Can	0.8226	lb	1.0184	lb		0	0.000	0.0	0
Mass of Water w (%) 0.0508 lb 0.0518 lb Mass of Water w (%) 8.21 7.58 0.040 83.0 248 Average w (%) 7.90 St Dev = 0.447 0.050 119.5 357 Density Computations 0.070 179.1 535 0.080 214.3 640 Mass of Mold and Wet Soil 18.811 lb 0.0700 179.1 535 Vol of Mold 0.07502 ft ³ 0.100 278.9 833 Mass of Wet Soil 9.5525 lb 0.110 310.1 926 Wet Density 127.3 lb/tt ³ 0.120 342.9 1024	Mass of Dry Soil & Can	0.7718	lb	0.9666	lb		C	0.010	14.4	43
w (%) 8.21 7.58 0.040 8.30 248 Average w (%) 7.90 St Dev = 0.447 0.050 119.5 357 Density Computations 0.060 146.3 437 Mass of Mold 9.2585 lb 0.070 179.1 535 Mass of Mold and Wet Soil 18.811 lb 0.090 246.4 736 Vol of Mold 0.07502 ft ³ 0.100 278.9 833 Mass of Wet Soil 9.5525 lb 0.110 310.1 926 Wet Density 127.3 lb/t ³ 1024 0.120 342.9 1024	Mass of Dry Soil	0.6184	lb	0.6832	lb		0	0.020	31.1	93
Average w (%) 7.90 St Dev = 0.447 0.050 119.5 357 Density Computations 0.060 146.3 437 Mass of Mold 9.2585 lb 0.070 179.1 535 Mass of Mold and Wet Soil 18.811 lb 0.090 246.4 736 Vol of Mold 0.07502 ft ³ 0.100 278.9 833 Mass of Wet Soil 9.5525 lb 0.110 310.1 926 Wet Density 127.3 lb/t ³ 1024 0.120 342.9 1024	Mass of Water	0.0508	lb	0.0518	lb		0	0.030	54.2	162
Density Computations 0.060 146.3 437 Mass of Mold 9.2585 lb 0.070 179.1 535 Mass of Mold and Wet Soil 18.811 lb 0.080 214.3 640 Vol of Mold 0.07502 ft ³ 0.100 278.9 833 Mass of Wet Soil 9.5525 lb 0.110 310.1 926 Wet Density 127.3 lb/t ³ / ₄ 0.120 342.9 1024	w (%)	8.21	1	7.58			0	0.040	83.0	248
Density Computations 0.070 179.1 535 Mass of Mold 9.2585 lb 0.080 214.3 640 Mass of Mold and Wet Soil 18.811 lb 0.090 246.4 736 Vol of Mold 0.07502 ft ³ 0.100 278.9 833 Mass of Wet Soil 9.5525 lb 0.110 310.1 926 Wet Density 127.3 lb/t ³ / ₄ 1024 1024 1024	Average w (%)	7.90		St Dev =	0.447		0	0.050	119.5	357
Mass of Mold 9.2585 Ib Mass of Mold and Wet Soil 18.811 Ib Vol of Mold 0.07502 ft ³ Mass of Wet Soil 9.5525 Ib Wet Density 127.3 Ib/t ³				_			0	0.060	146.3	437
Mass of Mold and Wet Soil 18.811 lb 0.090 246.4 736 Vol of Mold 0.07502 ft ³ 0.100 278.9 833 Mass of Wet Soil 9.5525 lb 0.110 310.1 926 Wet Density 127.3 lb/t ³ 0.120 342.9 1024	Density Comput	ations					C	0.070	179.1	535
Vol of Mold 0.07502 ft ³ 0.100 278.9 833 Mass of Wet Soil 9.5525 lb 0.110 310.1 926 Wet Density 127.3 lb/ft ³ 0.120 342.9 1024	Mass of Mold	9.2585	lb				C	0.080	214.3	640
Mass of Wet Soil 9.5525 Ib 0.110 310.1 926 Wet Density 127.3 Ib/ft ³ 0.120 342.9 1024	Mass of Mold and Wet Soil	18.811	lb	1			C	0.090	246.4	736
Wet Density 127.3 lb/ft ³ 0.120 342.9 1024	Vol of Mold	0.07502	ft ³	1			C	0.100	278.9	833
	Mass of Wet Soil	9.5525	lb]			C	0.110	310.1	926
Dry Density 118.0 lb/ft ³ 0.130 370.0 1105	Wet Density	127.3	lb/ft ³]			C	0.120	342.9	1024
	Dry Density	118.0	lb/ft ³]			C	0.130	370.0	1105

Measurements							
Diameter of Piston	1.95	in					
Area of Piston	2.98648	in ²					

(11)	(psi)	(ui)
0.000	0.0	0
0.010	14.4	43
0.020	31.1	93
0.030	54.2	162
0.040	83.0	248
0.050	119.5	357
0.060	146.3	437
0.070	179.1	535
0.080	214.3	640
0.090	246.4	736
0.100	278.9	833
0.110	310.1	926
0.120	342.9	1024
0.130	370.0	1105
0.140	401.8	1200
0.150	429.3	1282
0.160	455.4	1360
0.170	480.5	1435
0.180	505.3	1509
0.190	529.1	1580
0.200	551.8	1648
0.225	612.8	1830
0.250	669.7	2000
0.275	721.3	2154
0.300	770.1	2300
0.325	814.3	2432
0.350	859.9	2568
0.375	903.7	2699
0.400	945.6	2824
0.450	1028.6	3072
0.500	1108.7	3311


Description of Soil	100% RAP (3) @ woptimum = 8%					Date	6/14/2002 6/15/2002	(mixed) (compacted)
Tested By	Francis						6/17/2002	· · /
Compaction	Modified -	Metho	od D					
Comments	Tested as	a sub	grade mater	<mark>ial (15 I</mark> I	o surcharge)			
Compaction Moistur	e Conter	nt]		_			
Can Number	3		4			Deflection	Stress	Load
Mass of Can	0.3092	lb	0.1516	lb		(in)	(psi)	(lb)
Mass of Wet Soil & Can	0.9456	lb	1.0282	lb		0.000	0.0	0
Mass of Dry Soil & Can	0.8984	lb	0.9652	lb		0.010	11.7	35
Mass of Dry Soil	0.5892	lb	0.8136	lb		0.020	27.1	81
Mass of Water	0.0472	lb	0.063	lb		0.030	49.9	149
w (%)	8.01		7.74			0.040	76.0	227
Average w (%)	7.88		St Dev =	0.189		0.050	107.5	321
			_			0.060	141.0	421
Density Computations					0.070	173.8	519	
Mass of Mold	9.295	lb]			0.080	207.9	621
Mass of Mold and Wet Soil	18.793	lb]			0.090	241.1	720
Vol of Mold		ft ³						

Measurements								
Diameter of Piston	1.95	in						
Area of Piston	2.98648	in ²						

Mass of Wet Soil

Wet Density

Dry Density

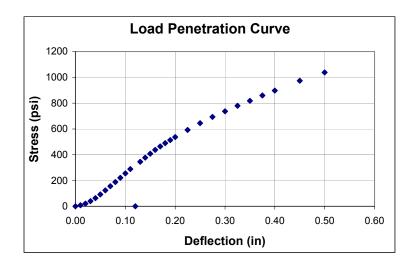
9.498

126.6

117.4

lb

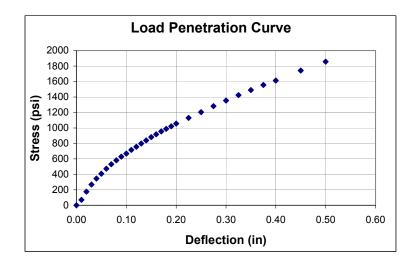
lb/ft³


lb/ft³

(in)	(psi)	(lb)				
0.000	0.0	0				
0.010	11.7	35				
0.020	27.1	81				
0.030	49.9	149				
0.040	76.0	227				
0.050	107.5	321				
0.060	141.0	421				
0.070	173.8	519				
0.080	207.9	621				
0.090	241.1	720				
0.100	274.6	820				
0.110	304.0	908				
0.120	337.2	1007				
0.130	367.7	1098				
0.140	399.1	1192				
0.150	433.3	1294				
0.160	462.1	1380				
0.170	490.9	1466				
0.180	518.0	1547				
0.190	543.1	1622				
0.200	568.6	1698				
0.225	626.8	1872				
0.250	683.1	2040				
0.275	738.0	2204				
0.300	784.5	2343				
0.325	831.7	2484				
0.350	#VALUE!	-				
0.375	923.5	2758				
0.400	970.7	2899				
0.450	1056.1	3154				
0.500	1149.5	3433				

Description of Soil	100% RAP (4) @ woptimum = 8%				Date	6/18/2002	(mixed) (compacted)	
Tested By	Francis						6/21/2002	
Compaction	Modified -	Metho	d D					
Comments	Tested as	a subo	grade materi	ial (15 II	b surcharge)			
Compaction Moisture	e Conter	nt]					
Can Number	1		2			Deflection	Stress	Load
Mass of Can	0.1534	lb	0.2834	lb		(in)	(psi)	(lb)
Mass of Wet Soil & Can	0.9966	lb	1.0568	lb		0.000	0.0	0
Mass of Dry Soil & Can	0.9356	lb	1.0040	lb		0.010	8.4	25
Mass of Dry Soil	0.7822	lb	0.7206	lb		0.020	20.4	61
Mass of Water	0.061	lb	0.0528	lb		0.030	39.8	119
w (%)	7.80)	7.33			0.040	63.6	190
Average w (%)	7.56		St Dev =	0.333		0.050	92.1	275
						0.060	123.6	369
Density Computa	ations					0.070	156.4	467
Mass of Mold	9.257	lb				0.080	188.5	563
Mass of Mold and Wet Soil	18.738	lb				0.090	221.7	662
Vol of Mold	0.07502	ft ³				0.100	255.2	762
Mass of Wet Soil	9.481	lb	1			0.110	288.0	860
Wet Density	126.4	lb/ft ³				0.120	#VALUE!	-
Dry Density	117.5	lb/ft ³				0.130	345.2	1031

Measurements						
Diameter of Piston	1.95	in				
Area of Piston	2.98648	in ²				

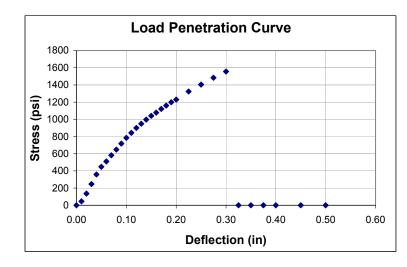

0.000	0.0	0
0.010	8.4	25
0.020	20.4	61
0.030	39.8	119
0.040	63.6	190
0.050	92.1	275
0.060	123.6	369
0.070	156.4	467
0.080	188.5	563
0.090	221.7	662
0.100	255.2	762
0.110	288.0	860
0.120	#VALUE!	-
0.130	345.2	1031
0.140	377.4	1127
0.150	407.2	1216
0.160	437.6	1307
0.170	464.8	1388
0.180	490.2	1464
0.190	513.6	1534
0.200	537.4	1605
0.225	591.7	1767
0.250	645.2	1927
0.275	693.5	2071
0.300	736.3	2199
0.325	778.8	2326
0.350	818.0	2443
0.375	859.2	2566
0.400	897.4	2680
0.450	974.4	2910
0.500	1038.0	3100

Description of Soil	80% RAP	(1) @	woptimum =	= 6%		Date	6/10/2002	(mixed) (compacted
Tested By	Francis &	Eric					6/13/2002	· ·
Compaction	Modified -	Metho	od D					
Comments	Tested as	a sub	grade mater	ial (15 l	b surcharge)			
Compaction Moistur	re Contei	nt]					
Can Number	7		8			Deflection	Stress	Load
Mass of Can	0.2790	lb	0.1326	lb		(in)	(psi)	(lb)
Mass of Wet Soil & Can	1.0378	lb	0.9466	lb		0.000	0.0	0
Mass of Dry Soil & Can	0.9984	lb	0.9016	lb]	0.010	70.3	210
Mass of Dry Soil	0.7194	lb	0.769	lb		0.020	176.5	527
Mass of Water	0.0394	lb	0.045	lb		0.030	267.5	799
w (%)	5.48	3	5.85	i		0.040	345.2	1031
Average w (%)	5.66		St Dev =	0.265		0.050	408.5	1220
			-			0.060	473.5	1414
Density Comput	ations					0.070	530.4	1584
Mass of Mold	9.295	lb	1			0.080	581.6	1737
Mass of Mold and Wet Soil	19.037	lb	1			0.090	629.2	1879
Vol of Mold	0.07502	ft ³]			0.100	669.0	1998
Mass of Wet Soil	9.742	lb	1			0.110	715.2	2136
Wet Density	129.9	lb/ft ³]			0.120	757.1	2261
			4			-		

Measurements						
Diameter of Piston	1.95	in				
Area of Piston	2.98648	in ²				

Dry Density

122.9 lb/ft³

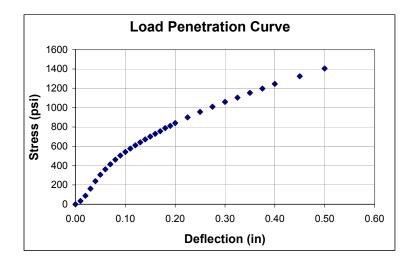

Defiection	Suess	Luau
(in)	(psi)	(lb)
0.000	0.0	0
0.010	70.3	210
0.020	176.5	527
0.030	267.5	799
0.040	345.2	1031
0.050	408.5	1220
0.060	473.5	1414
0.070	530.4	1584
0.080	581.6	1737
0.090	629.2	1879
0.100	669.0	1998
0.110	715.2	2136
0.120	757.1	2261
0.130	798.6	2385
0.140	838.8	2505
0.150	880.3	2629
0.160	916.8	2738
0.170	955.0	2852
0.180	988.8	2953
0.190	1021.9	3052
0.200	1055.8	3153
0.225	1130.8	3377
0.250	1203.4	3594
0.275	1280.8	3825
0.300	1354.4	4045
0.325	1424.4	4254
0.350	1490.1	4450
0.375	1555.7	4646
0.400	1612.6	4816
0.450	1742.2	5203
0.500	1857.0	5546

Description of Soil	80% RAP	(2) @	woptimum =	= 6%		Date	6/14/2002 6/15/2002	(mixed) (compacted)
Tested By	Francis						6/17/2002	· · /
Compaction	Modified -	Metho	od D					
Comments	Tested as	a sub	grade mater	ial (15 I	b surcharge)			
Compaction Moistur	o Conto	ot	1					
Can Number	5 conte	n.	6		1	Deflection	Stress	Load
Mass of Can	0.1248	lb	0.1574	lb		(in)	(psi)	(lb)
Mass of Wet Soil & Can	0.9700	lb	0.9372	lb		0.000	0.0	0
Mass of Dry Soil & Can	0.9196	lb	0.8948	lb		0.000	45.9	137
Mass of Dry Soil	0.7948	lb	0.7374	lb		0.020	135.9	406
Mass of Water	0.0504	lb	0.0424	lb		0.030	246.4	736
w (%)	6.3	4	5.75	5		0.040	358.3	1070
Average w (%)	6.05		St Dev =	0.418		0.050	448.7	1340
			-			0.060	510.3	1524
Density Comput	ations					0.070	581.6	1737
Mass of Mold	9.323	lb	1			0.080	648.9	1938
Mass of Mold and Wet Soil	19.153	lb				0.090	717.9	2144
Vol of Mold	0.07502	ft ³				0.100	784.5	2343
Mass of Wet Soil	9.83	lb				0.110	842.8	2517
Wet Density	131.0	lb/ft ³				0.120	901.4	2692

Measurements						
Diameter of Piston	1.95	in				
Area of Piston	2.98648	in ²				

Dry Density

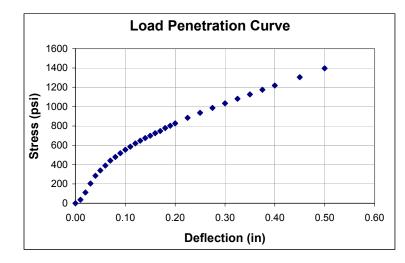
123.6 lb/ft³


(in)	(psi)	(lb)
0.000	0.0	0
0.010	45.9	137
0.020	135.9	406
0.030	246.4	736
0.040	358.3	1070
0.050	448.7	1340
0.060	510.3	1524
0.070	581.6	1737
0.080	648.9	1938
0.090	717.9	2144
0.100	784.5	2343
0.110	842.8	2517
0.120	901.4	2692
0.130	949.6	2836
0.140	996.5	2976
0.150	1041.0	3109
0.160	1078.5	3221
0.170	1120.7	3347
0.180	1159.9	3464
0.190	1198.4	3579
0.200	1229.9	3673
0.225	1323.6	3953
0.250	1404.3	4194
0.275	1483.7	4431
0.300	1556.7	4649
0.325	#VALUE!	-
0.350	#VALUE!	-
0.375	#VALUE!	-
0.400	#VALUE!	-
0.450	#VALUE!	-
0.500	#VALUE!	-

Description of Soil	80% RAP	(3) @	woptimum =	= 6%		Date	7/11/2002	· /
Tested By	Eric						7/14/2002	· ·
Compaction	Modified -	- Metho	od D					
Comments	Tested as	a sub	grade mater	ial (15 l	b surcharge)			
Compaction Moistu	re Conte	nt]		_			
Can Number	5		6			Deflection	Stress	Load
Mass of Can	0.1248	lb	0.1574	lb	1	(in)	(psi)	(lb)
Mass of Wet Soil & Can	0.9364	lb	0.9350	lb]	0.000	0.0	0
Mass of Dry Soil & Can	0.8816	lb	0.8822	lb]	0.010	34.5	103
Mass of Dry Soil	0.7568	lb	0.7248	lb]	0.020	88.1	263
Mass of Water	0.0548	lb	0.0528	lb]	0.030	161.4	482
w (%)	7.2	4	7.28	6]	0.040	240.1	717
Average w (%)	7.26		St Dev =	0.031	-	0.050	304.7	910
			_			0.060	362.0	1081
Density Compu	tations					0.070	413.9	1236
Mass of Mold	9.291	lb	1			0.080	461.1	1377

Benefy Computatione						
Mass of Mold	9.291	lb				
Mass of Mold and Wet Soil	18.924	lb				
Vol of Mold	0.07502	ft ³				
Mass of Wet Soil	9.633	lb				
Wet Density	128.4	lb/ft ³				
Dry Density	119.7	lb/ft ³				

Measurements						
Diameter of Piston	1.95	in				
Area of Piston	2.98648	in ²				

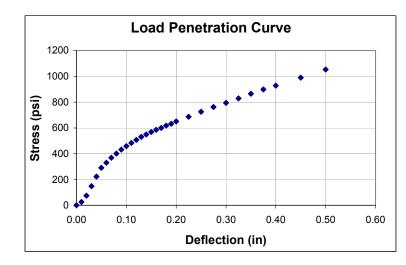

Deflection	Stress	Load
(in)	(psi)	(lb)
0.000	0.0	0
0.010	34.5	103
0.020	88.1	263
0.030	161.4	482
0.040	240.1	717
0.050	304.7	910
0.060	362.0	1081
0.070	413.9	1236
0.080	461.1	1377
0.090	504.3	1506
0.100	540.8	1615
0.110	576.3	1721
0.120	610.1	1822
0.130	639.9	1911
0.140	670.4	2002
0.150	699.8	2090
0.160	728.3	2175
0.170	755.7	2257
0.180	787.9	2353
0.190	811.3	2423
0.200	839.5	2507
0.225	899.4	2686
0.250	956.3	2856
0.275	1008.5	3012
0.300	1059.4	3164
0.325	1102.6	3293
0.350	1152.9	3443
0.375	1197.1	3575
0.400	1245.9	3721
0.450	1324.0	3954
0.500	1404.0	4193

Description of Soil	80% RAP	(4) @	woptimum =	= 6%		Date	7/11/2002 7/12/2002	•
Tested By	Eric						7/14/2002	(teste
Compaction	Modified - Method		- Method D					
Comments	Tested as	Tested as a subgrade mat			b surcharge)			
			- -					
Compaction Moistu	ire Contei	nt			-			
Can Number	3		4			Deflection	Stress	L
Mass of Can	0.3092	lb	0.1514	lb]	(in)	(psi)	(
Mass of Wet Soil & Can	0.9322	lb	0.9322	lb]	0.000	0.0	
Mass of Dry Soil & Can	0.8936	lb	0.8858	lb]	0.010	36.2	1
Mass of Dry Soil	0.5844	lb	0.7344	lb]	0.020	112.2	3
Mass of Water	0.0386	lb	0.0464	lb		0.030	204.6	6
w (%)	6.6	1	6.32	2]	0.040	284.6	8
Average w (%)	6.46		St Dev =	0.203		0.050	339.2	1
			_			0.060	389.8	1
Density Compu	tations					0.070	441.7	1
Mass of Mold	9.255	lb				0.080	479.5	1
	10.070					0.000	= 1 0 0	

Mass of Mold	9.255	lb
Mass of Mold and Wet Soil	18.878	lb
Vol of Mold	0.07502	ft ³
Mass of Wet Soil	9.623	lb
Wet Density	128.3	lb/ft ³
Dry Density	120.5	lb/ft ³

Measuremen	ts	
Diameter of Piston	1.95	in
Area of Piston	2.98648	in ²

Deflection	Stress	Load
(in)	(psi)	(lb)
0.000	0.0	0
0.010	36.2	108
0.020	112.2	335
0.030	204.6	611
0.040	284.6	850
0.050	339.2	1013
0.060	389.8	1164
0.070	441.7	1319
0.080	479.5	1432
0.090	518.0	1547
0.100	553.2	1652
0.110	585.6	1749
0.120	619.1	1849
0.130	646.2	1930
0.140	674.4	2014
0.150	698.8	2087
0.160	724.9	2165
0.170	748.0	2234
0.180	778.5	2325
0.190	801.6	2394
0.200	827.4	2471
0.225	883.3	2638
0.250	935.2	2793
0.275	986.1	2945
0.300	1034.3	3089
0.325	1080.9	3228
0.350	1126.4	3364
0.375	1174.0	3506
0.400	1217.8	3637
0.450	1303.5	3893
0.500	1396.3	4170



scription of Soil	60% RAP	60% RAP (1) @ woptimum = 7.8%				Date	6/24/2002 6/25/2002	`
ted By	Francis & Eric					6/27/2002		
mpaction	Modified - Method D							
omments	Tested as a subgrade material (15 lb surcharge)							
Compaction Moistu	ure Content]					
Can Number	1		2			Deflection	Stress	Τ
Mass of Can	0.1534	lb	0.2836	lb		(in)	(psi)	
Mass of Wet Soil & Can	0.9378	lb	0.9214	lb		0.000	0.0	
Mass of Dry Soil & Can	0.8812	lb	0.8788	lb		0.010	25.4	
Mass of Dry Soil	0.7278	lb	0.5952	lb		0.020	75.0	Τ
Mass of Water	0.0566	lb	0.0426	lb		0.030	148.7	
w (%)	7.78	}	7.16	5	1	0.040	222.0	
Average w (%)	7.47		St Dev =	0.438		0.050	290.0	
			_			0.060	330.5	
Density Comput	ations					0.070	369.0	
Mass of Mold	9.256	lb				0.080	401.1	Τ
lass of Mold and Wet Soil	18.800	lb				0.090	432.6	T
Vol of Mold	0.07502	ft ³	1			0.100	459.1	Τ
Mass of Wet Soil	9.544	lb	1			0.110	483.5	T

Measuremen	ts	
Diameter of Piston	1.95	in
Area of Piston	2.98648	in ²

Wet Density

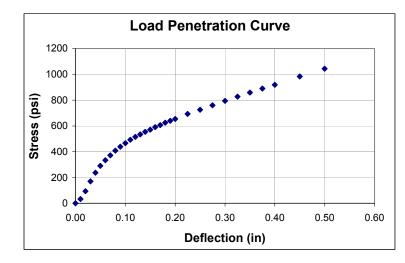
Dry Density

lb/ft³

lb/ft³

127.2

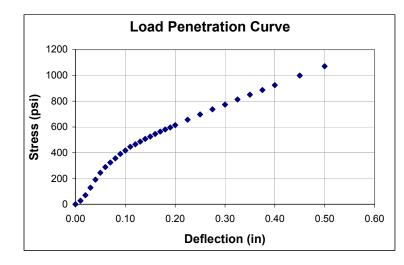
118.4


Deflection	Stress	Load
(in)	(psi)	(lb)
0.000	0.0	0
0.010	25.4	76
0.020	75.0	224
0.030	148.7	444
0.040	222.0	663
0.050	290.0	866
0.060	330.5	987
0.070	369.0	1102
0.080	401.1	1198
0.090	432.6	1292
0.100	459.1	1371
0.110	483.5	1444
0.120	507.0	1514
0.130	530.1	1583
0.140	549.5	1641
0.150	567.9	1696
0.160	585.0	1747
0.170	600.0	1792
0.180	618.1	1846
0.190	632.2	1888
0.200	650.3	1942
0.225	686.4	2050
0.250	725.6	2167
0.275	762.1	2276
0.300	794.2	2372
0.325	829.4	2477
0.350	865.2	2584
0.375	898.4	2683
0.400	928.9	2774
0.450	989.8	2956
0.500	1053.1	3145

Description of Soil	60% RAP	(2) @	woptimum =	7.8%		Date	6/24/2002	· /
Tested By	Francis &	Eric					6/27/2002	(compacted) (tested)
Compaction	Modified -	Metho	d D					
Comments	Tested as	a sub	grade mater	ial (15 l	b surcharge)			
Compaction Moistu	re Conter	nt						
Can Number	3		4			Deflection	Stress	Load
Mass of Can	0.3094	lb	0.1516	lb		(in)	(psi)	(lb)
Mass of Wet Soil & Can	0.9792	lb	0.9372	lb		0.000	0.0	0
Mass of Dry Soil & Can	0.9286	lb	0.8780	lb		0.010	33.5	100
Mass of Dry Soil	0.6192	lb	0.7264	lb		0.020	93.8	280
Mass of Water	0.0506	lb	0.0592	lb		0.030	170.1	508
w (%)	8.17	7	8.15	i i		0.040	237.1	708
Average w (%)	8.16		St Dev =	0.016	-	0.050	290.0	866
		_	_			0.060	333.5	996
Density Compu	tations					0.070	371.7	1110

Density Computa	ations	
Mass of Mold	9.293	lb
Mass of Mold and Wet Soil	18.838	lb
Vol of Mold	0.07502	ft ³
Mass of Wet Soil	9.545	lb
Wet Density	127.2	lb/ft ³
Dry Density	117.6	lb/ft ³

Measuremen	ts	
Diameter of Piston	1.95	in
Area of Piston	2.98648	in ²

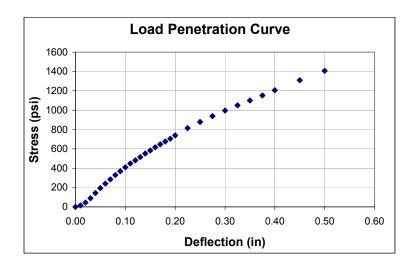


Deflection	Stress	Load
(in)	(psi)	(lb)
0.000	0.0	0
0.010	33.5	100
0.020	93.8	280
0.030	170.1	508
0.040	237.1	708
0.050	290.0	866
0.060	333.5	996
0.070	371.7	1110
0.080	408.8	1221
0.090	438.6	1310
0.100	465.8	1391
0.110	492.9	1472
0.120	515.3	1539
0.130	534.4	1596
0.140	553.8	1654
0.150	571.6	1707
0.160	591.0	1765
0.170	606.4	1811
0.180	624.8	1866
0.190	639.9	1911
0.200	654.3	1954
0.225	693.5	2071
0.250	725.6	2167
0.275	760.1	2270
0.300	793.9	2371
0.325	827.7	2472
0.350	858.5	2564
0.375	889.7	2657
0.400	919.5	2746
0.450	983.8	2938
0.500	1044.0	3118

escription of Soil ested By	60% RAP	(3) @	woptimum =	- 7.8%		Date	
mpaction	Modified -	Metho	od D				
mments	Tested as	a sub	grade mater	ial (15 I	b surcharge)		
Compaction Moistur	re Conter	nt	1		_		
Can Number	3		4			Deflection	
Mass of Can	0.3092	lb	0.1516	lb		(in)	
Mass of Wet Soil & Can	0.9786	lb	0.9882	lb		0.000	
Mass of Dry Soil & Can	0.9300	lb	0.9248	lb]	0.010	
Mass of Dry Soil	0.6208	lb	0.7732	lb		0.020	
Mass of Water	0.0486	lb	0.0634	lb		0.030	
w (%)	7.83	3	8.20		1	0.040	L
Average w (%)	8.01	1	St Dev =	0.262		0.050	
			1			0.060	-
Density Comput			_			0.070	
Mass of Mold	9.291	lb				0.080	
Mass of Mold and Wet Soil	18.886	lb	_			0.090	
Vol of Mold	0.07502	ft ³				0.100	
Mass of Wet Soil	9.595	lb				0.110	
Wet Density	127.9	lb/ft ³	1			0.120	
Dry Density	118.4	lb/ft ³				0.130	4
						0.140	5
			1			0.150	52
M	-1-		•			0.400	

Measurements		
Diameter of Piston	1.95	in
Area of Piston	2.98648	in ²

0.000	0.0	0
0.010	27.1	81
0.020	70.0	209
0.030	128.2	383
0.040	191.2	571
0.050	245.1	732
0.060	288.0	860
0.070	324.8	970
0.080	356.6	1065
0.090	390.1	1165
0.100	417.2	1246
0.110	446.0	1332
0.120	465.4	1390
0.130	485.9	1451
0.140	507.0	1514
0.150	525.0	1568
0.160	545.8	1630
0.170	563.2	1682
0.180	580.6	1734
0.190	596.0	1780
0.200	613.8	1833
0.225	656.0	1959
0.250	696.8	2081
0.275	736.3	2199
0.300	773.8	2311
0.325	813.7	2430
0.350	849.8	2538
0.375	886.3	2647
0.400	924.2	2760
0.450	998.8	2983
0.500	1070.2	3196



Description of Soil	60% RAP (4) @ woptimum =	7.8%	Date	7/22/2002	(mixed) (compacted)
Tested By	Eric			7/25/2002	· · /
Compaction	Modified - Method D				
Comments	Tested as a subgrade materi	al (15 lb surcharge)			


Compaction Moistur	e Conter	nt		
Can Number	1		2	
Mass of Can	0.1532	lb	0.2832	lb
Mass of Wet Soil & Can	0.9646	lb	0.9880	lb
Mass of Dry Soil & Can	0.9020	lb	0.9364	lb
Mass of Dry Soil	0.7488	lb	0.6532	lb
Mass of Water	0.0626	lb	0.0516	lb
w (%)	8.36	6	7.90	
Average w (%)	8.13		St Dev =	0.326

Density Computations			
Mass of Mold	9.254	lb	
Mass of Mold and Wet Soil	19.160	lb	
Vol of Mold	0.07502	ft ³	
Mass of Wet Soil	9.906	lb	
Wet Density	132.0	lb/ft ³	
Dry Density	122.1	lb/ft ³	

Measuremen	ts	
Diameter of Piston	1.95	in
Area of Piston	2.98648	in ²

Deflection	Stress	Load
(in)	(psi)	(lb)
0.000	0.0	0
0.010	15.4	46
0.020	44.2	132
0.030	89.1	266
0.040	143.6	429
0.050	193.5	578
0.060	241.1	720
0.070	285.3	852
0.080	329.5	984
0.090	368.3	1100
0.100	409.5	1223
0.110	448.4	1339
0.120	482.2	1440
0.130	515.3	1539
0.140	552.8	1651
0.150	584.0	1744
0.160	617.1	1843
0.170	647.3	1933
0.180	676.0	2019
0.190	705.2	2106
0.200	739.0	2207
0.225	814.0	2431
0.250	878.6	2624
0.275	938.6	2803
0.300	996.2	2975
0.325	1049.7	3135
0.350	1101.3	3289
0.375	1152.9	3443
0.400	1206.4	3603
0.450	1310.2	3913
0.500	1407.7	4204

Description of Soil

Date

2/3/2003 (mixed) 2/4/2003 (compacted) 2/6/2003 (tested)

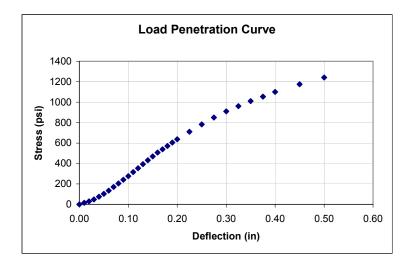
Tested By Compaction

Double Modified

Eric

Comments

Tested as a base material (no surcharge)


100% RAP (1) @ woptimum = 8%

Compaction Moisture Content

Can Number	9		10	
Mass of Can	0.0970	lb	0.1490	lb
Mass of Wet Soil & Can	0.5800	lb	0.6140	lb
Mass of Dry Soil & Can	0.5430	lb	0.5810	lb
Mass of Dry Soil	0.446	lb	0.432	lb
Mass of Water	0.037	lb	0.033	lb
w (%)	8.30)	7.64	
Average w (%)	7.97		St Dev =	0.465

Density Computations			
Mass of Mold	9.284	lb	
Mass of Mold and Wet Soil	18.985	lb	
Vol of Mold	0.07502	ft ³	
Mass of Wet Soil	9.701	lb	
Wet Density	129.3	lb/ft ³	
Dry Density	119.8	lb/ft ³	

Measuremen	ts	
Diameter of Piston	1.95	in
Area of Piston	2.98648	in ²

Deflection	Stress	Load
(in)	(psi)	(lb)
0.000	0.0	0
0.010	15.1	45
0.020	29.5	88
0.030	49.2	147
0.040	75.3	225
0.050	103.5	309
0.060	134.3	401
0.070	170.1	508
0.080	204.6	611
0.090	241.4	721
0.100	276.2	825
0.110	316.1	944
0.120	353.9	1057
0.130	394.1	1177
0.140	432.3	1291
0.150	469.4	1402
0.160	506.3	1512
0.170	538.4	1608
0.180	571.2	1706
0.190	604.4	1805
0.200	636.2	1900
0.225	710.9	2123
0.250	782.9	2338
0.275	850.5	2540
0.300	910.1	2718
0.325	961.7	2872
0.350	1010.6	3018
0.375	1054.8	3150
0.400	1100.3	3286
0.450	<u>1175.6</u> 1241.6	3511 3708

→ <u>LBR 46.3</u>

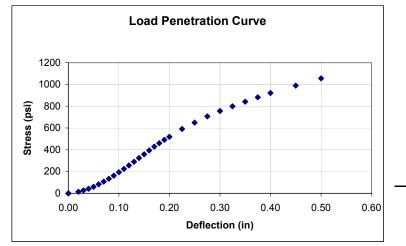
Descri	ntion	٥f	Soil
Descri	puon	OI.	3011

Tested By

Eric

Compaction **Double Modified**

Comments


Tested as a base material (no surcharge)

100% RAP (2) @ woptimum = 8%

Compaction Moistur				
Can Number	8		5	
Mass of Can	0.1330	lb	0.1240	lb
Mass of Wet Soil & Can	1.1900	lb	1.0020	lb
Mass of Dry Soil & Can	1.1130	lb	0.9380	lb
Mass of Dry Soil	0.98	lb	0.814	lb
Mass of Water	0.077	lb	0.064	lb
w (%)	7.86 7.86			
Average w (%)	7.86		St Dev =	0.004

Density Computations						
Mass of Mold	9.252	lb				
Mass of Mold and Wet Soil	18.954	lb				
Vol of Mold	0.07502	ft ³				
Mass of Wet Soil	9.702	lb				
Wet Density	129.3	lb/ft ³				
Dry Density	119.9	lb/ft ³				

Measurements						
Diameter of Piston 1.95 in						
Area of Piston	2.98648	in ²				

Deflection	Stress	Load
(in)	(psi)	(lb)
0.000	0.0	0
0.000	0.0	
0.020	14.4	43
0.030	26.5	79
0.040	41.5	124
0.050	60.3	180
0.060	82.4	246
0.070	107.1	320
0.080	133.3	398
0.090	162.1	484
0.100	193.9	579
0.110	225.0	672
0.120	256.5	766
0.130	290.3	867
0.140	324.8	970
0.150	357.9	1069
0.160	394.4	1178
0.170	428.3	1279
0.180	460.4	1375
0.190	491.5	1468
0.200	519.7	1552
0.225	591.3	1766
0.250	648.9	1938
0.275	706.5	2110
0.300	755.1	2255
0.325	798.9	2386
0.350	842.1	2515
0.375	882.6	2636
0.400	920.8	2750
0.450	989.5	2955
0.500	1056.1	3154

3/3/2003 (mixed)

3/4/2003 (compacted) 3/6/2003 (tested)

Date

<u>LBR</u> <u>40.9</u>

Description of Soil

Date

3/3/2003 (mixed) 3/4/2003 (compacted) 3/6/2003 (tested)

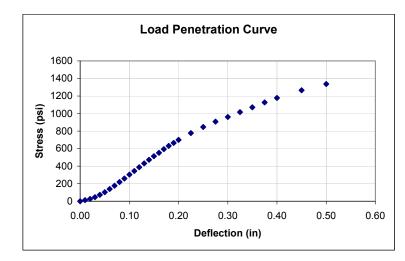
Tested By Compaction

Double Modified

Eric

Comments

Tested as a base material (no surcharge)


100% RAP (3) @ woptimum = 8%

Compaction Moisture Content

Can Number	9		10	
Mass of Can	0.0980	lb	0.1470	lb
Mass of Wet Soil & Can	1.1570	lb	0.8630	lb
Mass of Dry Soil & Can	1.0760	lb	0.8090	lb
Mass of Dry Soil	0.978	lb	0.662	lb
Mass of Water	0.081	lb	0.054	lb
w (%)	8.28		8.16	
Average w (%)	8.22		St Dev =	0.088

Density Computations					
Mass of Mold 9.316					
Mass of Mold and Wet Soil	19.093	lb			
Vol of Mold	0.07502	ft ³			
Mass of Wet Soil	9.777	lb			
Wet Density	130.3	lb/ft ³			
Dry Density	120.4	lb/ft ³			

Measurements					
Diameter of Piston 1.95 in					
Area of Piston 2.98648 in					

Deflection	Stress	Load
(in)	(psi)	(lb)
0.000	0.0	0
0.010	12.7	38
0.020	26.8	80
0.030	46.5	139
0.040	72.7	217
0.050	103.5	309
0.060	139.0	415
0.070	177.1	529
0.080	218.3	652
0.090	259.2	774
0.100	302.4	903
0.110	345.2	1031
0.120	387.4	1157
0.130	430.6	1286
0.140	472.8	1412
0.150	513.3	1533
0.160	551.5	1647
0.170	593.3	1772
0.180	631.2	1885
0.190	665.0	1986
0.200	699.2	2088
0.225	776.8	2320
0.250	846.1	2527
0.275	907.4	2710
0.300	960.7	2869
0.325	1015.6	3033
0.350	1070.2	3196
0.375	1125.4	3361
0.400	1178.0	3518
0.450	1264.7	3777
0.500	1335.4	3988

→ <u>LBR 53.0</u>

Appendix I

RAP-Soil Mixtures Mohr-Coulomb Failure Envelopes

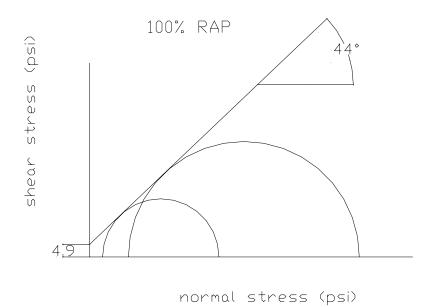


Figure I-1. Mohr-Coulomb failure envelope of 100% RAP

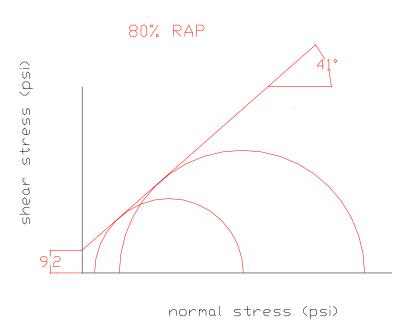


Figure I-2. Mohr-Coulomb failure envelope of 80% RAP

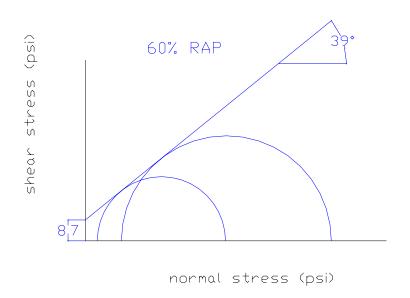


Figure I-3. Mohr-Coulomb failure envelope of 60% RAP

Appendix J

Surface and Leachate Water Data

Time of Exposure	Concentrations (µg/l) ^b					
(days)	RAP	RAP	RAP	Limerock	Limerock	Limerock
	Surface Runoff 1 ^a	Surface Runoff 2 ^a	Leachate	Surface Runoff 1 ^a	Surface Runoff 2 ^a	Leachate
38	BDL	-	-	-	-	-
44	1.25	-	BDL	BDL	-	1.01
58	2.31	-	2.09	-	-	1.98
61	1.95	-	2.02	-	-	2.38
80	1.59	-	1.45	1.63	-	1.56
90	1.94	-	1.71	1.87	-	1.43
99	1.72	-	1.49	-	1.68	1.32
110	-	-	-	1.08	-	-
122	BDL	-	BDL	-	-	BDL
134	BDL	BDL	1.15	1.27	1.28	1.09
141	-	-	-	BDL	-	-
147	BDL	BDL	BDL	BDL	-	BDL
155	BDL	BDL	BDL	BDL	1.04	BDL
165	BDL	BDL	BDL	-	BDL	BDL

Table J.1 Silver (Ag) concentration versus time in surface runoff and leachate samples collected from the RAP and Limerock collection systems.

"-" = Insufficient quantity for collection BDL = below detection limit, $Ag < 1 \mu g/l$

^a Samples were collected from separate collection tanks

^b EPA Standard = $1000 \mu g/l$

Time of Exposure		Concentrations ($\mu g/l$) ^b				
(days)	RAP	RAP	RAP	Limerock	Limerock	Limerock
	Surface Runoff 1 ^a	Surface Runoff 2 ^a	Leachate	Surface Runoff 1 ^a	Surface Runoff 2 ^a	Leachate
38	2.78	-	-	-	-	-
44	BDL	-	BDL	2.21	-	BDL
58	BDL	-	BDL	-	-	BDL
61	BDL	-	BDL	-	-	BDL
80	BDL	-	BDL	BDL	-	BDL
90	BDL	-	BDL	BDL	-	BDL
99	BDL	-	BDL	-	BDL	BDL
110	- !	-	-	BDL	-	-
122	BDL	-	BDL	-	-	BDL
134	BDL	BDL	BDL	BDL	BDL	BDL
141	- 1	-	-	3.28	-	-
147	BDL	BDL	BDL	BDL	-	BDL
155	BDL	BDL	BDL	BDL	BDL	BDL
165	BDL	BDL	BDL	-	BDL	BDL

Table J.2 Cadmium (Cd) concentration versus Time in surface runoff and leachate samples collected from the RAP and Limerock collection systems.

"-" = Insufficient quantity for analysis BDL = Below detection limit, $Cd < 1 \mu g/l$

^a Samples were colleted from separate collection tanks

^b EPA Standard = $1000 \mu g/l$

Time of Exposure	Concentrations $(\mu g/l)^{b}$							
(days)	RAP RAP		RAP	Limerock	Limerock	Limerock		
	Surface Runoff 1 ^a	Surface Runoff 2 ^a	Leachate	Surface Runoff 1 ^a	Surface Runoff 2 ^a	Leachate		
38	BDL	-	-	-	-	-		
44	BDL	-	BDL	9.14	-	BDL		
58	BDL	-	BDL	-	-	BDL		
61	BDL	-	BDL	-	-	BDL		
80	BDL	-	BDL	BDL	-	BDL		
90	BDL	-	BDL	BDL	-	BDL		
99	BDL	-	BDL	-	BDL	BDL		
110	-	-	-	BDL	-	-		
122	BDL	-	BDL	-	-	BDL		
134	BDL	BDL	BDL	BDL	BDL	BDL		
141	-	-	-	BDL	-	-		
147	BDL	BDL	BDL	BDL	-	BDL		
155	BDL	BDL	BDL	BDL	BDL	BDL		
165	BDL	BDL	BDL	-	BDL	BDL		

Table J.3 Chromium (Cr) concentration versus Time in surface runoff and leachate collected from the RAP and Limerock collection systems.

"-" = Insufficient quantity for analysis BDL = Below detection limit, $Cr < 5 \mu g/l$

^a Samples were colleted from separate collection tanks

^b EPA Standard = $5000 \ \mu g/l$

Time of Exposure			Concentratio	ons $(\mu g/l)^{b}$		
(days)	RAP	RAP	RAP	Limerock	Limerock	Limerock
	Surface Runoff 1 ^a	Surface Runoff 2 ^a	Leachate	Surface Runoff 1 ^a	Surface Runoff 2 ^a	Leachate
38	38.39	-	-	-	-	-
44	BDL	-	BDL	8.5	-	BDL
58	BDL	-	7.76	-	-	BDL
61	334.76	-	BDL	-	-	6.35
80	BDL	-	BDL	BDL	-	BDL
90	BDL	-	BDL	BDL	-	BDL
99	BDL	-	BDL	-	BDL	BDL
110	-	-	-	BDL	-	-
122	BDL	-	BDL	-	-	BDL
134	BDL	BDL	BDL	BDL	BDL	BDL
141	-	-	-	BDL	-	-
147	BDL	BDL	BDL	6.41	-	5.71
155	BDL	BDL	BDL	6.52	BDL	BDL
165	20.77	BDL	BDL	-	BDL	BDL
179	BDL	BDL	BDL	8.80	-	BDL
197	BDL	BDL	BDL	8.77	-	BDL
290	BDL	BDL	BDL	BDL	-	BDL

Table J.4 Lead (Pb) concentration versus Time in surface runoff and leachate samples collected from the RAP and Limerock collection systems.

"-" = Insufficient quantity for analysis BDL = Below detection limit, $Pb < 5 \mu g/l$

^a Samples were colleted from separate collection tanks

^b EPA Standard = $5000 \mu g/l$

Time of Exposure	Concentrations $(\mu g/l)^{b}$								
(day)	RAP Surface Runoff 1 ^a	RAP Surface Runoff 2 ^a	RAP Leachate	Limerock Surface Runoff 1 ^a	Limerock Surface Runoff 2 ^a	Limerock Leachate			
38	1.79	-	-	-	-	-			
44	2.55	-	85.00	50.22	-	11.44			
58	BDL	-	2.77	-	-	57.46			
61	BDL	-	9.36	-	-	24.72			
80	BDL	-	3.92	38.04	-	65.96			
90	1.13	-	2.42	30.54	-	1,026.80			
99	1.55	-	1.28	-	15.22	1,061.60			
110	-	-	-	18.66	-	-			
122	1.23	-	BDL	-	-	967.60			
134	BDL	4.32	2.53	14.49	12.95	412.00			
141	-	-	-	16.79	-	-			
147	BDL	3.26	1.73	14.79	-	434.15			
155	BDL	BDL	1.06	7.79	6.36	526.60			
165	BDL	2.52	4.54	-	6.64	103.55			

Table J.5 Selenium (Se) concentration versus Time in surface runoff and leachate samples collected from the RAP and Limerock collection systems.

"-" = represents not Insufficient quantity for analysis BDL = Below detection limit, Se $< 1 \ \mu g/l$

^a Samples were colleted from separate collection tanks

^b EPA Standard = = $1000 \mu g/l$

Time	Concentrations ($\mu g/l$) ^a				
(min)	RAP	RAP	Limerock		
	DDW	Acid Rain	DDW		
0	BDL	12.89	BDL		
120	BDL	7.63	BDL		
180	BDL	3.29	BDL		
240	BDL	1.52	BDL		
300	BDL	BDL	BDL		
360	BDL	BDL	BDL		

Table J.6 Concentration of cadmium (Cd) versus time from column leaching tests on RAP and limerock

BDL = Below detection limit, $Cd < 1 \mu g/l$

 a EPA Standard-1000 $\mu g/l$

Time	Concentrations $(\mu g/l)^a$				
(min)	RAP	RAP	Limerock		
	DDW	Acid Rain	DDW		
0	BDL	BDL	BDL		
120	BDL	BDL	112.96		
180	BDL	BDL	6.92		
240	BDL	BDL	BDL		
300	BDL	BDL	BDL		
360	BDL	BDL	BDL		

Table J.7 Concentration of lead (Pb) versus time from column leaching test on RAP and Limerock

BDL = Below detection limit, $Pb < 5 \mu g/l l$

 a EPA Standard-5000 $\mu g/l$

Time	Concentrations (µg/l) ^a						
(min)	RAP	RAP RAP		Limerock	Limerock		
	DDW1	DDW2	Acid Rain	DDW1	DDW2		
0	BDL	BDL	BDL	BDL	BDL		
120	1.31	BDL	BDL	1,949.00	1,843.50		
180	BDL	BDL	BDL	1,867.00	1,890.00		
240	BDL	1.29	BDL	1,668.50	1,833.00		
300	BDL	BDL	BDL	1,462.50	1,735.00		
360	1.26	1.03	BDL	1,191.00	1,499.00		

 Table J.8
 Selenium (Se) concentration versus time from column leaching tests on RAP and Limerock

BDL = Below detection limit, Se < 1 μ g/l

^a EPA Standard = $1000 \mu g/l$

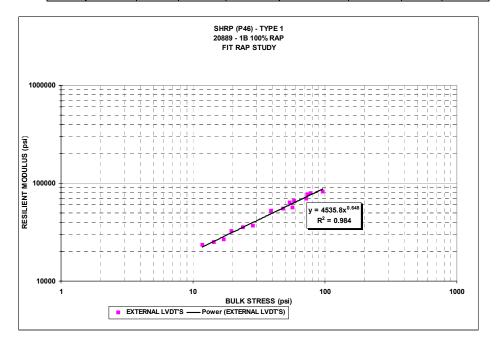
Appendix K

RAP-Soil Mixtures Resilient Modulus Data

Foundations Laboratory - State Materials Office

Procedure: SHRP (P46) - Type 1

Date: 25-Jun-02 Proj. NO.: FIT RAP Study


Material Discription: 100% RAP at 8% moisture Comments: w_f = 6.9% Lab # : 20889 Sample # : 1B LBR :

Soil Class :

Conditioning Information:
Repetitions = 500
σ Deviator = 15 psi
σ Confining = 15 psi

INSITU or TARGET MOIST. / DENSITY:
118 @ 8%
ACTUAL MOISTURE / DENSITY:
118.3 @ 7.8%

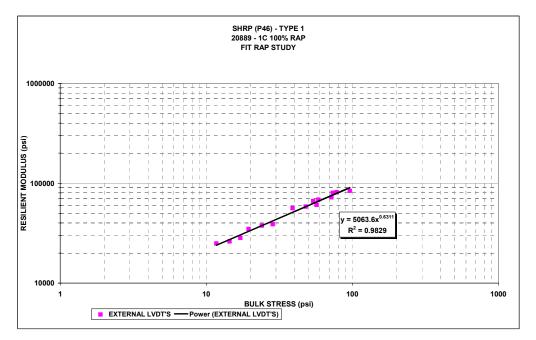
TEST SEQ.	CONFINING STRESS	CYCLIC STRESS	CONTACT STRESS	MAX. AXIAL STRESS	BULK STRESS	RESILIENT DEFORMATION	RESILIENT STRAIN	RESILIENT MODULUS
#	(psi)	(psi)	(psi)	(psi)	(psi)	(in)	(in/in)	(psi)
1	3	2.72	0.29	3.01	11.72	0.00092688	0.00011586	23440
2	3	5.46	0.56	6.01	14.46	0.00174603	0.00021825	24996
3	3	8.12	0.90	9.02	17.12	0.00243118	0.0003039	26709
4	5	4.50	0.51	5.01	19.50	0.00111691	0.00013961	32245
5	5	8.97	1.04	10.01	23.97	0.00201276	0.0002516	35649
6	5	13.49	1.52	15.01	28.49	0.00291465	0.00036433	37015
7	10	8.96	1.04	10.01	38.96	0.00136209	0.00017026	52640
8	10	18.03	1.98	20.01	48.03	0.00260828	0.00032603	55297
9	10	27.00	3.02	30.02	57.00	0.00379715	0.00047464	56887
10	15	9.02	0.99	10.01	54.02	0.0011307	0.00014134	63785
11	15	13.51	1.51	15.02	58.51	0.00162754	0.00020344	66414
12	15	27.02	2.98	30.01	72.02	0.00310684	0.00038835	69587
13	20	13.46	1.55	15.01	73.46	0.00139135	0.00017392	77382
14	20	18.04	1.96	20.00	78.04	0.00181369	0.00022671	79567
15	20	36.00	4.02	40.02	96.00	0.00351189	0.00043899	82000

Foundations Laboratory - State Materials Office

2 EXTERNAL LVDT'S

Procedure: SHRP (P46) - Type 1

Date: 25-Jun-02 Proj. NO.: FIT RAP Study


Material Discription: <u>100% RAP at 8% moisture</u> Comments: w_f =7.0%

Lab # :	20889
Sample # :	1C
I BR	

Soil Class :

Conditioning Information:	INSITU or TARGET MOIST. / DENSITY:
Repetitions = 500	118 @ 8%
σ Deviator = 15 psi	ACTUAL MOISTURE / DENSITY:
σ Confining = 15 psi	117.9 @ 8.3%

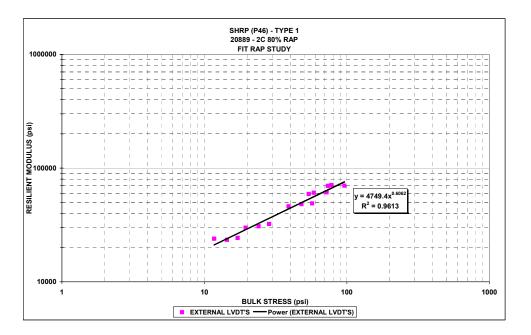
TEST	CONFINING	CYCLIC	CONTACT	MAX. AXIAL	BULK	RESILIENT	RESILIENT	RESILIENT
SEQ.	STRESS	STRESS	STRESS	STRESS	STRESS	DEFORMATION	STRAIN	MODULUS
#	(psi)	(psi)	(psi)	(psi)	(psi)	(in)	(in/in)	(psi)
1	3	2.72	0.30	3.01	11.72	0.00087086	0.00010886	24971
2	3	5.42	0.60	6.01	14.42	0.00165770	0.00020721	26145
3	3	8.11	0.90	9.01	17.11	0.00228424	0.00028553	28419
4	5	4.49	0.53	5.01	19.49	0.00103073	0.00012884	34833
5	5	9.01	0.99	10.00	24.01	0.00191322	0.00023915	37690
6	5	13.52	1.49	15.01	28.52	0.00278322	0.00034790	38867
7	10	8.99	1.02	10.01	38.99	0.00127850	0.00015981	56252
8	10	18.02	1.99	20.00	48.02	0.00246780	0.00030848	58408
9	10	26.96	3.06	30.01	56.96	0.00354593	0.00044324	60814
10	15	9.02	0.99	10.01	54.02	0.00108890	0.00013611	66270
11	15	13.56	1.45	15.01	58.56	0.00158143	0.00019768	68583
12	15	26.99	3.02	30.01	71.99	0.00298489	0.00037311	72335
13	20	13.53	1.48	15.01	73.53	0.00135089	0.00016886	80127
14	20	18.03	1.98	20.01	78.03	0.00177577	0.00022197	81225
15	20	36.04	3.98	40.02	96.04	0.00343476	0.00042934	83939

Foundations Laboratory - State Materials Office

Procedure: SHRP (P46) - Type 1

Date: 27-Jun-02 Proj. NO.: FIT RAP Study

Material Discription: <u>80% RAP at 6% moisture</u> Comments: $w_f = 6.8\%$


Lab # :	20889
Sample # :	2C
LBR :	

Soil Class :

onditioning Information:
epetitions = 500
Deviator = 15 psi
Confining = 15 psi

INSITU or TARGET MOIST. / DENSITY:
122 @ 6%
ACTUAL MOISTURE / DENSITY:
118.4 @ 6.3%

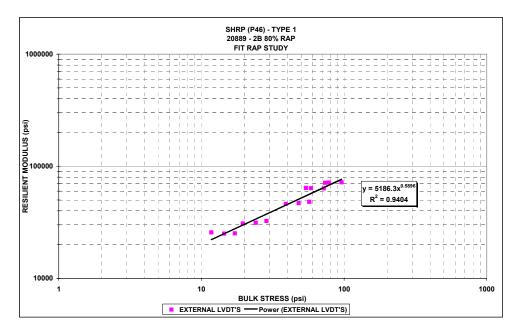
TEST	CONFINING	CYCLIC	CONTACT	MAX. AXIAL	BULK	RESILIENT	RESILIENT	RESILIENT
SEQ.	STRESS	STRESS	STRESS	STRESS	STRESS	DEFORMATION	STRAIN	MODULUS
#	(psi)	(psi)	(psi)	(psi)	(psi)	(in)	(in/in)	(psi)
1	3	2.70	0.31	3.01	11.70	0.00090447	0.00011306	23919
2	3	5.39	0.62	6.01	14.39	0.00184127	0.00023016	23410
3	3	8.11	0.91	9.02	17.11	0.00267210	0.00033401	24295
4	5	4.48	0.53	5.01	19.48	0.00119921	0.00014990	29900
5	5	9.01	1.00	10.00	24.01	0.00234111	0.00029264	30776
6	5	13.49	1.51	15.00	28.49	0.00334858	0.00041857	32236
7	10	8.99	1.02	10.01	38.99	0.00155945	0.00019493	46139
8	10	18.04	1.97	20.01	48.04	0.00299566	0.00037446	48175
9	10	27.05	2.97	30.02	57.05	0.00442584	0.00055323	48893
10	15	9.01	0.99	10.00	54.01	0.00121860	0.00015233	59162
11	15	13.56	1.47	15.00	58.56	0.00178481	0.00022310	60650
12	15	27.02	3.00	30.02	72.02	0.00353128	0.00044141	61202
13	20	13.50	1.51	15.01	73.50	0.00154609	0.00019326	69840
14	20	18.02	2.01	20.03	78.02	0.00203244	0.00025406	70937
15	20	36.00	4.01	40.01	96.00	0.00411128	0.00051391	70053

Foundations Laboratory - State Materials Office

2 EXTERNAL LVDT'S

Procedure: SHRP (P46) - Type 1

Date: 25-Jun-02 Proj. NO.: FIT RAP Study


Material Discription: <u>80% RAP at 6% moisture</u> Comments: $w_f = 6.8\%$

Lab # :	20889
Sample # :	2B
LBR :	

Soil Class :

Conditioning Information:	INSITU or TARGET MOIST. / DENSITY:
Repetitions = 500	122 @ 6%
σ Deviator = 15 psi	ACTUAL MOISTURE / DENSITY:
σ Confining = 15 psi	120.6 @ 6.3%

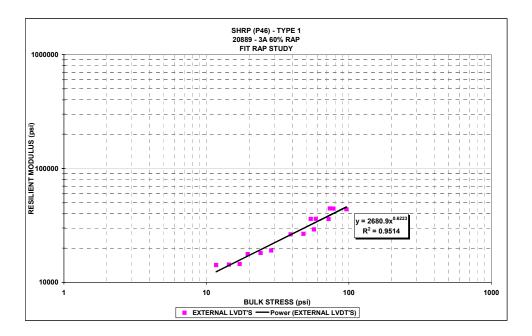
TEST	CONFINING	CYCLIC	CONTACT	MAX. AXIAL	BULK	RESILIENT	RESILIENT	RESILIENT
SEQ.	STRESS	STRESS	STRESS	STRESS	STRESS	DEFORMATION	STRAIN	MODULUS
#	(psi)	(psi)	(psi)	(psi)	(psi)	(in)	(in/in)	(psi)
1	3	2.73	0.28	3.01	11.73	0.00085018	0.00010627	25725
2	3	5.42	0.59	6.01	14.42	0.00172923	0.00021615	25090
3	3	8.13	0.90	9.03	17.13	0.00257639	0.00032205	25237
4	5	4.50	0.51	5.02	19.50	0.00116690	0.00014586	30864
5	5	9.05	0.96	10.01	24.05	0.00230923	0.00028865	31343
6	5	13.56	1.44	15.01	28.56	0.00333564	0.00041696	32527
7	10	9.02	0.99	10.01	39.02	0.00156333	0.00019542	46171
8	10	18.07	1.95	20.02	48.07	0.00308314	0.00038539	46883
9	10	27.04	2.99	30.02	57.04	0.00448444	0.00056056	48229
10	15	8.95	1.06	10.01	53.95	0.00111562	0.00013945	64181
11	15	13.51	1.50	15.01	58.51	0.00169863	0.00021233	63649
12	15	27.05	2.97	30.02	72.05	0.00340674	0.00042584	63519
13	20	13.58	1.45	15.03	73.58	0.00152541	0.00019068	71233
14	20	18.09	1.93	20.02	78.09	0.00202052	0.00025256	71614
15	20	36.04	3.99	40.04	96.04	0.00400915	0.00050114	71921

Foundations Laboratory - State Materials Office

Procedure: SHRP (P46) - Type 1

Date: 28-Jun-02 Proj. NO.: FIT RAP Study

 $\begin{array}{l} \mbox{Material Discription: } \underline{60\% \mbox{ RAP at 8\% moisture}} \\ \mbox{Comments: } w_{\mbox{f}} = 8.8\% \end{array}$


Lab # :	20889
Sample # :	3A
LBR :	

Soil Class :

Conditioning Information:]
Repetitions = 500	1
σ Deviator = 15 psi	I
σ Confining = 15 psi	

INSITU or TARGET MOIST. / DENSITY:	
121 @ 8%	
ACTUAL MOISTURE / DENSITY:	
116.1 @ 8.6%	

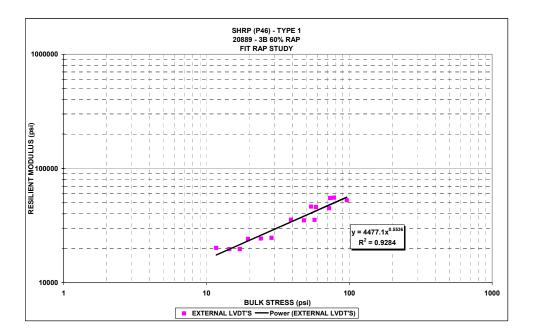
TEST	CONFINING	CYCLIC	CONTACT	MAX. AXIAL	BULK	RESILIENT	RESILIENT	RESILIENT
SEQ.	STRESS	STRESS	STRESS	STRESS	STRESS	DEFORMATION	STRAIN	MODULUS
#	(psi)	(psi)	(psi)	(psi)	(psi)	(in)	(in/in)	(psi)
1	3	2.71	0.30	3.01	11.71	0.00152670	0.00019084	14192
2	3	5.40	0.61	6.01	14.40	0.00301979	0.00037747	14304
3	3	8.13	0.89	9.02	17.13	0.00448228	0.00056029	14506
4	5	4.51	0.50	5.01	19.51	0.00203862	0.00025483	17705
5	5	9.00	1.01	10.01	24.00	0.00397382	0.00049673	18121
6	5	13.51	1.50	15.01	28.51	0.00567288	0.00070911	19054
7	10	8.98	1.03	10.01	38.98	0.00272376	0.00034047	26389
8	10	18.01	1.99	20.00	48.01	0.00540357	0.00067545	26669
9	10	26.85	3.20	30.05	56.85	0.00735700	0.00091963	29193
10	15	8.96	1.05	10.01	53.96	0.00198648	0.00024831	36091
11	15	13.53	1.48	15.01	58.53	0.00299479	0.00037435	36137
12	15	26.98	3.02	30.00	71.98	0.00599133	0.00074892	36030
13	20	13.48	1.52	15.00	73.48	0.00241954	0.00030244	44573
14	20	18.04	1.97	20.01	78.04	0.00324774	0.00040597	44440
15	20	36.05	3.98	40.03	96.05	0.00658597	0.00082325	43790

Foundations Laboratory - State Materials Office

Procedure: SHRP (P46) - Type 1

Date: 25-Jun-02 Proj. NO.: FIT RAP Study

Material Discription: $\underline{60\%}$ RAP at 8% moisture Comments: $w_f = 8.4\%$


Lab # :	20889
Sample # :	3B
LBR :	

Soil Class :

Conditioning Information:
Repetitions = 500
σ Deviator = 15 psi
σ Confining = 15 psi

INSITU or TARGET MOIST. / DENSITY:
121 @ 8%
ACTUAL MOISTURE / DENSITY:
117.0 @ 8.4%

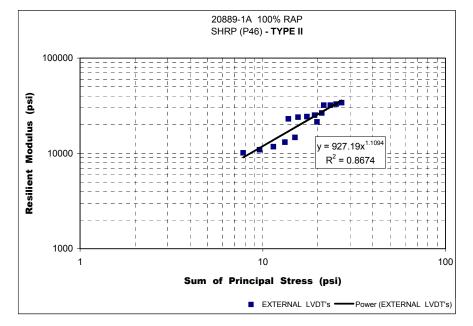
TEST	CONFINING	CYCLIC	CONTACT	MAX. AXIAL	BULK	RESILIENT	RESILIENT	RESILIENT
SEQ.	STRESS	STRESS	STRESS	STRESS	STRESS	DEFORMATION	STRAIN	MODULUS
#	(psi)	(psi)	(psi)	(psi)	(psi)	(in)	(in/in)	(psi)
1	3	2.69	0.32	3.01	11.69	0.00106693	0.00013337	20190
2	3	5.42	0.59	6.01	14.42	0.00220452	0.00027556	19669
3	3	8.10	0.92	9.02	17.10	0.00328652	0.00041082	19710
4	5	4.51	0.51	5.02	19.51	0.00149352	0.00018669	24136
5	5	8.99	1.02	10.01	23.99	0.00294912	0.00036864	24375
6	5	13.52	1.48	15.00	28.52	0.00437844	0.00054730	24708
7	10	9.02	0.99	10.01	39.02	0.00202655	0.00025332	35588
8	10	18.05	1.96	20.01	48.05	0.00410180	0.00051272	35195
9	10	27.05	2.96	30.01	57.05	0.00610034	0.00076254	35472
10	15	9.03	0.98	10.01	54.03	0.00155600	0.00019450	46402
11	15	13.50	1.51	15.01	58.50	0.00234887	0.00029361	45973
12	15	27.03	2.98	30.01	72.03	0.00481581	0.00060198	44908
13	20	13.48	1.53	15.01	73.48	0.00195760	0.00024470	55085
14	20	18.01	2.00	20.01	78.01	0.00259276	0.00032410	55562
15	20	35.98	4.03	40.01	95.98	0.00547294	0.00068412	52595

FOUNDATIONS LABORATORY - STATE MATERIALS OFFICE

PROCEDURE: SHRP (P46) - TYPE II

DATE July 11, 2002 PROJ. NO.:

MATERIAL DESCRIPTION : <u>100% RAP</u> COMMENTS :


LAB # :	20889
SAMPLE#:	1A
LBR :	

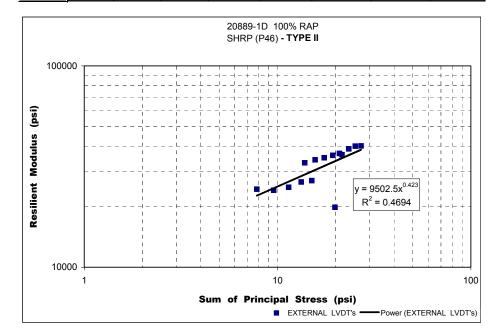
SOIL CLASS:

INSITU or TARGET MOIST. / DENSITY:	
118 @ 8%	
ACTUAL MOISTURE / DENSITY:	
117.7 @ 7.7%	

CONDITIONING INFORMATION:
REPETITIONS= 500
σ DEVIATOR = 15 psi
σ CONFINING = 15 psi

2 EXTERNAL LVDT's									
TEST	CONFINING	CYCLIC	CONTACT	MAX. AXIAL	BULK	RESILIENT	RESILIENT	RESILIENT	
SEQ.	STRESS	STRESS	STRESS	STRESS	STRESS	DEFORMATION	STRAIN	MODULUS	
#	(psi)	(psi)	(psi)	(psi)	(psi)	(in)	(in/in)	(psi)	
1	6	1.80	0.21	2.00	19.80	0.00067113	0.00008389	21436	
2	6	3.59	0.42	4.00	21.59	0.00089370	0.00011171	32111	
3	6	5.44	0.57	6.01	23.44	0.00135649	0.00016956	32073	
4	6	7.19	0.80	7.99	25.19	0.00175139	0.00021892	32864	
5	6	8.97	1.03	10.00	26.97	0.00210541	0.00026318	34098	
6	4	1.81	0.19	2.00	13.81	0.00062858	0.00007857	23043	
7	4	3.60	0.41	4.01	15.60	0.00119792	0.00014974	24018	
8	4	5.44	0.57	6.01	17.44	0.00178525	0.00022316	24357	
9	4	7.20	0.81	8.01	19.20	0.00228682	0.00028585	25201	
10	4	9.02	0.99	10.00	21.02	0.00272204	0.00034025	26504	
11	2	1.81	0.20	2.00	7.81	0.00142931	0.00017866	10125	
12	2	3.61	0.40	4.01	9.61	0.00264275	0.00033034	10927	
13	2	5.43	0.58	6.01	11.43	0.00369287	0.00046161	11761	
14	2	7.21	0.80	8.01	13.21	0.00439826	0.00054978	13111	
15	2	9.01	0.99	10.00	15.01	0.00490544	0.00061318	14694	
	_				-				

FOUNDATIONS LABORATORY - STATE MATERIALS OFFICE


PROCEDURE : SHRP (P46) - TYPE II	LAB # :	20889
DATE July 19, 2002	SAMPLE#:	1D
PROJ. NO.: FIT RAP STUDY	LBR :	
MATERIAL DESCRIPTION : 100% RAP		
COMMENTS :	SOIL CLASS :	
CONDITIONING INFORMATION:	INSITU or TARGET MOIST. / DE	ENSITY:

INSITU or TARGET MOIST. / DENSITY: 118 @ 8%
ACTUAL MOISTURE / DENSITY: 116.6 @ 8.4%

REPETITIONS = 500
σ DEVIATOR = 15 psi
σ CONFINING = 15 psi

2 EXTERNAL LVDT's CONTACT MAX. AXIAL STRESS STRESS RESILIENT DEFORMATION CYCLIC CONTACT STRESS STRESS BULK STRESS

Z EATERNAE EVDIS										
TEST	CONFINING	CYCLIC	CONTACT	MAX. AXIAL	BULK	RESILIENT	RESILIENT	RESILIENT		
SEQ.	STRESS	STRESS	STRESS	STRESS	STRESS	DEFORMATION	STRAIN	MODULUS		
#	(psi)	(psi)	(psi)	(psi)	(psi)	(in)	(in/in)	(psi)		
1	6	1.82	0.21	2.03	19.82	0.00073384	0.00009173	19846		
2	6	3.57	0.44	4.00	21.57	0.00078813	0.00009852	36197		
3	6	5.37	0.62	5.99	23.37	0.00111002	0.00013875	38717		
4	6	7.24	0.74	7.98	25.24	0.00145000	0.00018125	39943		
5	6	9.04	1.01	10.05	27.04	0.00180550	0.00022569	40061		
6	4	1.81	0.20	2.01	13.81	0.00043866	0.00005483	33034		
7	4	3.64	0.37	4.01	15.64	0.00085362	0.00010670	34124		
8	4	5.44	0.57	6.01	17.44	0.00124489	0.00015561	34977		
9	4	7.33	0.68	8.01	19.33	0.00163012	0.00020376	35950		
10	4	8.90	1.11	10.01	20.90	0.00193785	0.00024223	36753		
11	2	1.81	0.19	2.00	7.81	0.00059411	0.00007426	24409		
12	2	3.55	0.46	4.01	9.55	0.00117982	0.00014748	24086		
13	2	5.42	0.57	5.99	11.42	0.00173655	0.00021707	24955		
14	2	7.26	0.75	8.01	13.26	0.00219288	0.00027411	26490		
15	2	9.04	0.97	10.01	15.04	0.00268541	0.00033568	26927		

FOUNDATIONS LABORATORY - STATE MATERIALS OFFICE

CONDITIONING INFORMATION: INSTU or TARGET MOIST. / DENSTY: REPETITIONS = 500 0 σ DEVIATOR = 15 psi ACTUAL MOISTURE / DENSTY: σ CONFINING = 15 psi 119.2 @ 6.0% 2 EXTERNAL LVDT's TEST CONFINING CYCLIC CONTACT MAX. AXIAL BULK RESILIENT RESILIENT RESILIENT	DATE PROJ. NO.:	MATERIAL DE	, 2002 SCRIPTION :		LAB # : SAMPLE # : LBR :					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	COMMENTS : SOIL CLASS:									
σ CONFINING = 15 psi 119.2 @ 6.0% EXTERNAL LVDT's TEST SEQ. # CONFINING (psi) CYCLIC STRESS (psi) CONTACT STRESS (psi) MAX. AXIAL STRESS (psi) BULK STRESS (psi) RESILIENT DEFORMATION (psi) RESILIENT STRAIN (in) RESILIENT MODULU (psi) 1 6 1.80 0.20 2.00 19.80 0.00238981 0.00029873 6038 2 6 3.60 0.42 4.01 21.60 0.001141682 0.00017710 20300 3 6 5.41 0.60 6.01 23.41 0.00132073 0.00016509 32750 4 6 7.22 0.80 8.01 25.22 0.00177404 0.0002176 32536 5 6 8.94 1.06 10.01 26.94 0.00220711 0.00027589 32412 6 4 1.81 0.20 2.01 13.81 0.00068802 0.00012082 29801 7 4 3.60 0.41 4.01 15.60 0.00096653 0.00012082										
Image: state state state Image: state I										
TEST SEQ. CONFINING STRESS (psi) CYCLIC STRESS (psi) CONTACT STRESS (psi) MAX. AXIAL STRESS (psi) BULK STRESS (psi) RESILIENT STRESS (psi) RESILIENT STRESS (psi) RESILIENT STRESS RESILIENT STRESS RESILIENT (in) RESILIENT STRAIN RESILIENT MODULU (psi) 1 6 1.80 0.20 2.00 19.80 0.00238981 0.00029873 6038 2 6 3.60 0.42 4.01 21.60 0.00141682 0.00017710 20300 3 6 5.41 0.60 6.01 23.41 0.00132073 0.00016509 32750 4 6 7.22 0.80 8.01 25.22 0.00177404 0.0002176 32536 5 6 8.94 1.06 10.01 26.94 0.00220711 0.00027589 32412 6 4 1.81 0.20 2.01 13.81 0.00086802 0.00008600 21020 7 4 3.60 0.41 4.01 15.60 0.00096653 0.00012082	0	CONFINING	= 15 psi					113.2 @ 0.076		
SEQ. STRESS (psi) STRESS (psi) STRESS (psi) STRESS (psi) STRESS (psi) DEFORMATION (in) STRAIN (in/in) MODULU (psi) 1 6 1.80 0.20 2.00 19.80 0.00238981 0.00029873 6038 2 6 3.60 0.42 4.01 21.60 0.00141682 0.00017710 20300 3 6 5.41 0.60 6.01 23.41 0.00132073 0.00016509 32750 4 6 7.22 0.80 8.01 25.22 0.00177404 0.0002176 32536 5 6 8.94 1.06 10.01 26.94 0.00220711 0.00027589 32412 6 4 1.81 0.20 2.01 13.81 0.00086802 0.00008600 21020 7 4 3.60 0.41 4.01 15.60 0.00096653 0.00012082 29801 8 4 5.41 0.60 6.01 17.41 0.00024765 29159 </td <td></td> <td></td> <td></td> <td>2</td> <td>EXTERNAL</td> <td>LVDT's</td> <td></td> <td></td> <td></td>				2	EXTERNAL	LVDT's				
# (psi) (psi) (psi) (psi) (psi) (psi) (psi) (in)	TEST							-	RESILIENT	
1 6 1.80 0.20 2.00 19.80 0.00238981 0.00029873 6038 2 6 3.60 0.42 4.01 21.60 0.00141682 0.00017710 20300 3 6 5.41 0.60 6.01 23.41 0.00132073 0.00016509 32750 4 6 7.22 0.80 8.01 25.22 0.00177404 0.00022176 32536 5 6 8.94 1.06 10.01 26.94 0.00220711 0.00027589 32412 6 4 1.81 0.20 2.01 13.81 0.00068802 0.00008600 21020 7 4 3.60 0.41 4.01 15.60 0.00096653 0.00012082 29801 8 4 5.41 0.60 6.01 17.41 0.00150688 0.00018836 28713 9 4 7.22 0.79 8.01 19.22 0.00198121 0.00024765 29159 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>MODULUS</td></t<>									MODULUS	
2 6 3.60 0.42 4.01 21.60 0.00141682 0.00017710 20300 3 6 5.41 0.60 6.01 23.41 0.00132073 0.00016509 32750 4 6 7.22 0.80 8.01 25.22 0.00177404 0.0022176 32536 5 6 8.94 1.06 10.01 26.94 0.00220711 0.00027589 32412 6 4 1.81 0.20 2.01 13.81 0.00068802 0.0008600 21020 7 4 3.60 0.41 4.01 15.60 0.00096653 0.00012082 29801 8 4 5.41 0.60 6.01 17.41 0.00150688 0.00018836 28713 9 4 7.22 0.79 8.01 19.22 0.00198121 0.00024765 29159 10 4 8.98 1.02 10.00 20.98 0.00247082 0.00030885 29073	#	(psi)	(psi)	(psi)	(psi)	(psi)	(in)	(in/in)	(psi)	
2 6 3.60 0.42 4.01 21.60 0.00141682 0.00017710 20300 3 6 5.41 0.60 6.01 23.41 0.00132073 0.00016509 32750 4 6 7.22 0.80 8.01 25.22 0.00177404 0.0022176 32536 5 6 8.94 1.06 10.01 26.94 0.00220711 0.00027589 32412 6 4 1.81 0.20 2.01 13.81 0.00068802 0.0008600 21020 7 4 3.60 0.41 4.01 15.60 0.00096653 0.00012082 29801 8 4 5.41 0.60 6.01 17.41 0.00150688 0.00018836 28713 9 4 7.22 0.79 8.01 19.22 0.00198121 0.00024765 29159 10 4 8.98 1.02 10.00 20.98 0.00247082 0.00030885 29073		t								
3 6 5.41 0.60 6.01 23.41 0.00132073 0.00016509 32750 4 6 7.22 0.80 8.01 25.22 0.00177404 0.00022176 32536 5 6 8.94 1.06 10.01 26.94 0.00220711 0.00021769 32412 6 4 1.81 0.20 2.01 13.81 0.0006802 0.0008600 21020 7 4 3.60 0.41 4.01 15.60 0.00096653 0.00012082 29801 8 4 5.41 0.60 6.01 17.41 0.00150688 0.00018836 28713 9 4 7.22 0.79 8.01 19.22 0.00198121 0.00024765 29159 10 4 8.98 1.02 10.00 20.98 0.00247082 0.0030885 29073	1	6	1.80	0.20	2.00	19.80	0.00238981	0.00029873	6038	
4 6 7.22 0.80 8.01 25.22 0.00177404 0.00022176 32536 5 6 8.94 1.06 10.01 26.94 0.00220711 0.00022176 32536 6 4 1.81 0.20 2.01 13.81 0.0006802 0.0008600 21020 7 4 3.60 0.41 4.01 15.60 0.00096653 0.00012082 29801 8 4 5.41 0.60 6.01 17.41 0.00150688 0.00018836 28713 9 4 7.22 0.79 8.01 19.22 0.00198121 0.00024765 29159 10 4 8.98 1.02 10.00 20.98 0.00247082 0.00030885 29073	2	6	3.60	0.42	4.01	21.60	0.00141682	0.00017710	20300	
5 6 8.94 1.06 10.01 26.94 0.0022711 0.00027589 32412 6 4 1.81 0.20 2.01 13.81 0.0008802 0.00027589 32412 7 4 3.60 0.41 4.01 15.60 0.00096653 0.00012082 29801 8 4 5.41 0.60 6.01 17.41 0.00150688 0.00018836 28713 9 4 7.22 0.79 8.01 19.22 0.00198121 0.00024765 29159 10 4 8.98 1.02 10.00 20.98 0.00247082 0.0030885 29073	3	6	5.41	0.60	6.01	23.41	0.00132073	0.00016509	32750	
6 4 1.81 0.20 2.01 13.81 0.00068802 0.00008600 21020 7 4 3.60 0.41 4.01 15.60 0.00096653 0.00012082 29801 8 4 5.41 0.60 6.01 17.41 0.00150688 0.00018836 28713 9 4 7.22 0.79 8.01 19.22 0.00198121 0.00024765 29159 10 4 8.98 1.02 10.00 20.98 0.00247082 0.0030885 29073	4	6	7.22	0.80	8.01	25.22	0.00177404	0.00022176	32536	
7 4 3.60 0.41 4.01 15.60 0.00096653 0.00012082 29801 8 4 5.41 0.60 6.01 17.41 0.00150688 0.00018836 28713 9 4 7.22 0.79 8.01 19.22 0.00198121 0.00024765 29159 10 4 8.98 1.02 10.00 20.98 0.00247082 0.0030885 29073	5	6	8.94	1.06	10.01	26.94	0.00220711	0.00027589	32412	
8 4 5.41 0.60 6.01 17.41 0.00150688 0.00018836 28713 9 4 7.22 0.79 8.01 19.22 0.00198121 0.00024765 29159 10 4 8.98 1.02 10.00 20.98 0.00247082 0.0030885 29073	6	4	1.81	0.20	2.01	13.81	0.00068802	0.00008600	21020	
9 4 7.22 0.79 8.01 19.22 0.00198121 0.00024765 29159 10 4 8.98 1.02 10.00 20.98 0.00247082 0.0030885 29073	7	4	3.60	0.41	4.01	15.60	0.00096653	0.00012082	29801	
10 4 8.98 1.02 10.00 20.98 0.00247082 0.00030885 29073	8	4	5.41	0.60	6.01	17.41	0.00150688	0.00018836	28713	
	9	4	7.22	0.79	8.01	19.22	0.00198121	0.00024765	29159	
11 2 1.81 0.20 2.01 7.81 0.00066920 0.00008365 21605	10	4	8.98	1.02	10.00	20.98	0.00247082	0.00030885	29073	
	11	2	1.81	0.20	2.01	7.81	0.00066920	0.00008365	21605	

9.61

11.41

13.21

0.00135822

0.00202311

0.00260310

0.00016978

0.00025289

0.00032539

21284

21384

22159

3.61

5.41

7.21

12

13

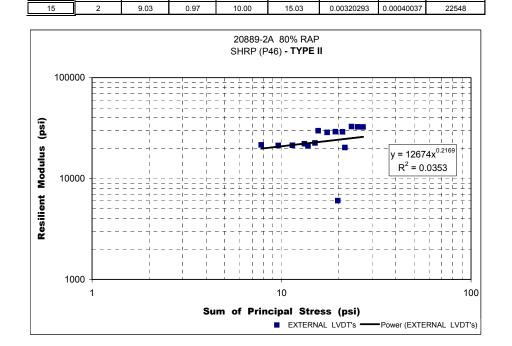
14

2

2

2

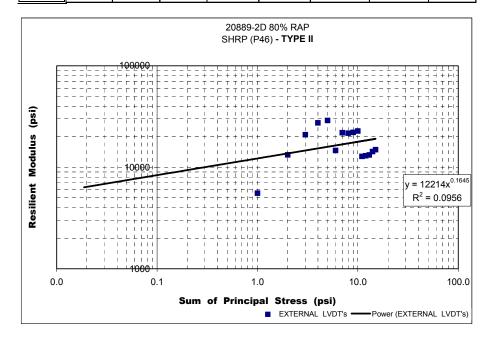
0.40


0.60

0.80

4.01

6.01


8.01

FOUNDATIONS LABORATORY - STATE MATERIALS OFFICE

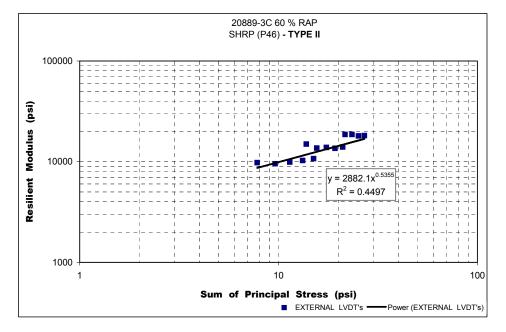
PROC	EDURE:SH	RP (P46) - T	LAB # : 20889						
DATE	July 18	, 2002	SAMPLE#: 2D						
PROJ. NO.: F	IT RAP STUD	Y				LBR :			
n i	IATERIAL DE	SCRIPTION :	80% RAP						
	(COMMENTS :				SOIL CLASS:			
CONDITI	ONING INFOR	MATION:				INSITU or TARGET MOIST. / DENSI			
RE	PETITIONS= 5	500				122 @ 6%			
σ	DEVIATOR =	15 psi				ACTUAL MOISTURE/ DENSITY:			
σ	CONFINING :	= 15 psi				119.9 @ 6.8%			
				2 EXTE	RNAL LVD	T's			
TEST	CONFINING	CYCLIC	CONTACT	MAX. AXIAL	BULK	RESILIENT	RESILIENT	RESILIENT	
SEQ.	STRESS	STRESS	STRESS	STRESS	STRESS	DEFORMATION	STRAIN	MODULUS	
#	(psi)	(psi)	(psi)	(in)	(in/in)	(psi)			

#	(psi)	(psi)	(psi)	(psi)	(psi)	(11)	(11711)	(psi)
1	6	1.81	0.19	2.00	19.81	0.00260513	0.00032564	5555
2	6	3.58	0.43	4.01	21.58	0.00216267	0.00027033	13240
3	6	5.46	0.57	6.02	23.46	0.00208750	0.00026094	20917
4	6	7.31	0.71	8.01	25.31	0.00213514	0.00026689	27384
5	6	8.91	1.10	10.01	26.91	0.00246392	0.00030799	28917
6	4	1.80	0.20	2.00	13.80	0.00098438	0.00012305	14635
7	4	3.64	0.37	4.01	15.64	0.00132978	0.00016622	21912
8	4	5.33	0.69	6.01	17.33	0.00196580	0.00024572	21675
9	4	7.08	0.93	8.01	19.08	0.00256864	0.00032108	22057
10	4	9.02	0.99	10.00	21.02	0.00317319	0.00039665	22729
11	2	1.79	0.21	2.01	7.79	0.00112381	0.00014048	12776
12	2	3.58	0.43	4.01	9.58	0.00220796	0.00027600	12969
13	2	5.45	0.57	6.01	11.45	0.00329471	0.00041184	13225
14	2	7.25	0.77	8.01	13.25	0.00406431	0.00050804	14266
15	2	9.02	0.98	10.00	15.02	0.00484942	0.00060618	14887

FOUNDATIONS LABORATORY - STATE MATERIALS OFFICE

LAB # : 20889 SAMPLE # : 3C LBR :

PROCEDURE: SHRP (P46) - TYPE II


DATE July 18, 2002 PROJ. NO.: FIT RAP STUDY MATERIAL DESCRIPTION : <u>60% RAP</u> COMMENTS :

> INSTU or TARGET MOIST. / DENSTY 121 @ 8% ACTUAL MOISTURE / DENSTY: 116.4 @ 9.1%

SOIL CLASS:

CONDITIONING INFORMATION:
REPETITIONS= 500
σ DEVIATOR = 15 psi
σ CONFINING = 15 psi

	2 EXTERNAL LVDT's								
TEST	CONFINING	CYCLIC	CONTACT	MAX. AXIAL	BULK	RESILIENT	RESILIENT	RESILIENT	
SEQ.	STRESS	STRESS	STRESS	STRESS	STRESS	DEFORMATION	STRAIN	MODULUS	
#	(psi)	(psi)	(psi)	(psi)	(psi)	(in)	(in/in)	(psi)	
1	6	1.82	0.19	2.00	19.82	0.00194865	0.00024358	7452	
2	6	3.61	0.40	4.00	21.61	0.00154954	0.00019369	18630	
3	6	5.42	0.60	6.01	23.42	0.00232690	0.00029086	18619	
4	6	7.23	0.78	8.01	25.23	0.00320724	0.00040091	18034	
5	6	9.03	0.97	10.00	27.03	0.00397985	0.00049748	18141	
6	4	1.79	0.21	2.00	13.79	0.00095963	0.00011995	14943	
7	4	3.58	0.43	4.01	15.58	0.00209722	0.00026215	13646	
8	4	5.40	0.61	6.01	17.40	0.00311976	0.00038997	13849	
9	4	7.23	0.78	8.01	19.23	0.00425649	0.00053206	13586	
10	4	9.02	1.02	10.03	21.02	0.00516321	0.00064540	13969	
11	2	1.81	0.19	2.00	7.81	0.00147974	0.00018497	9788	
12	2	3.61	0.40	4.01	9.61	0.00302927	0.00037866	9540	
13	2	5.38	0.63	6.01	11.38	0.00434871	0.00054359	9903	
14	2	7.22	0.79	8.01	13.22	0.00562204	0.00070275	10274	
15	2	9.00	1.00	10.00	15.00	0.00670103	0.00083763	10740	

Appendix L

Compaction Summary of RAP-Soil Mixtures

Test		100% RAP		80% RAP		60% RAP		Mold size	
		ω (%)	γ (lb/ft ³)	ω (%)	γ (lb/ft ³)	ω (%)	γ (lb/ft ³)	diameter (in)	volume (ft ³)
Moisture - Density	C.E. (ft-lb/ft ³)	8.0 56,	117.8 000	6.0 56,	121.7 ,000	7.8 56	121.2 ,000	6	0.0750
LBR - BASE	ave. stdv. C.E. (ft-lb/ft ³) R.C		117.6 0.75 000 .8%		121.9 0.77 ,000).2%		119.7 1.49 ,000 .8%	6	0.0750
LBR - SUBGRADE ave. stdv. C.E. (ft-lb/ft ³) R.C		8.0 117.7 0.33 0.26 56,000 99.9%		6.4 121.7 0.70 1.87 56,000 100.0%		8.0 119.1 0.31 2.02 56,000 98.3%		6	0.0750
Static Triaxial Compression	ave. stdv. C.E. (ft-lb/ft ³) R.C	7.8 119.8 0.11 0.15 56,153 101.7%		6.0 123.7 0.60 0.30 56,153 101.6%		8.6 118.0 0.10 0.27 56,153 97.4%		4	0.0609
Resilient Modulus BASE	ave. stdv. C.E. (ft-lb/ft ³) R.C		118.1 0.28 785 0.3%		119.5 1.56 ,785 .2%		116.6 0.64 ,785 .2%	4	0.0582
Resilient Modulus SUBGRADE	ave. stdv. C.E. (ft-lb/ft ³) R.C		117.2 0.78 785 .5%	0.78 0.57 35 58,78			116.4 - ,785 .0%	4	0.0582
Permeability	ave. stdv. C.E. (ft-lb/ft ³) R.C (%)		120.5 0.46 702 2.3%		122.3 1.10 ,246).5%		114.9 0.60 ,246 .8%	4	0.0317 ^a 0.0333 ^b

Compaction Characteristics of RAP-Soil Mixtures